
Yap Against Perils:
Application Guide and User’s Manual1

draft for program version 0.7+20210303 (built on 2021-03-03)

Mario Gleirscher
Computer Science, University of York, UK

May 6, 2021

1This work was supported by the German Research Foundation (Deutsche
Forschungsgemeinschaft) under the grant no. 381212925 and the Lloyds Register Foun-
dation Assuring Autonomy International Programme grant CSI:Cobots.

Abstract

Yap is a research tool for risk modelling—particularly, for exploring and in-
vestigating abstract state spaces for situational risk analysis—and for controller
synthesis—particularly, the synthesis of controllers for run-time handling of crit-
ical events occurring in the operation of highly-automated and autonomous sys-
tems. This document provides a guide to the concepts and usage of Yap as well
as a technical manual for the tool.

About this document:
This book, guide, and manual describes Yap, a prototypical tool under de-
velopment and part of ongoing scientific research. Passages marked with
“Experimental!” indicate incomplete features or features known to be
flawed. A more recent version of this document might be available from
http://yap.gleirscher.de.

Documentation license:

http://yap.gleirscher.de

Contents

List of Abbreviations 4

1 What is Yap and What Can It be Used For? 5
1.1 Who is Supposed to Use Yap? 5
1.2 Some of Yap’s Underlying Principles 6
1.3 About Yap, Acknowledgements, and Licensing 8

2 Yap in a Nutshell 10
2.1 Installation Requirements and Suggestions 10
2.2 Getting and Installing a Copy of Yap 11
2.3 First Steps in Using Yap . 12
2.4 The Yap Command-Line Interface 13
2.5 Editing Yap Models in Emacs with yap-mode 14

3 Yap’s Input 16
3.1 The Activity Model . 17
3.2 The Control Model . 18

3.2.1 Mode Specifications . 19
3.2.2 Item Specifications . 21

3.3 The Factor Model . 23
3.4 Impact Model . 29
3.5 Parameter-Value Pairs . 30

4 Yap’s Output: Risk Structures 32
4.1 Understanding Risk Structures 34
4.2 Settings Controlling Yap’s Output 35

5 Working with Yap 39
5.1 Reduction and Shaping of Risk Structures 39
5.2 Performing Symbolic Simulation 39
5.3 Property Inheritance and Superposition of Sub-Models 40
5.4 Using Wildcards . 42
5.5 Enumerating and Ordering Risk Spaces 42
5.6 Displaying Activity Graphs . 43

2

CONTENTS 3

6 FAQ, Troubleshooting, and Limitations 46
6.1 Frequently Asked Questions and Troubleshooting 46
6.2 Known Limitations and Bugs . 47

A More Technical Details 48
A.1 Taxonomy of Actions . 48
A.2 Taxonomy of Items . 50
A.3 Property Library . 51

List of Tables 57

List of Figures 58

Index 61

Abbreviations

AAIP Assuring Autonomy International Programme p. 1
BTA bow tie analysis p. 7
CE critical event p. 7
CLI command line interface p. 12
CSP communicating sequential processes p. 20
DFG German Research Foundation p. 1
DFT dynamic fault tree p. 14
DFTA dynamic fault tree analysis p. 6
DSL domain-specific language p. 6
FMEA failure mode and effects analysis p. 6
FTA fault tree analysis p. 7
GCL guarded command language p. 4
HARA hazard analysis and risk assessment p. 5
HazOp Hazard and Operability studies p. 6
LOPA layer of protection analysis p. 6
LRF Lloyds Register Foundation p. 1
LTS labelled transition system p. 6
MCSeq minimal cut sequence p. 5
MDP Markov decision process p. 5
OS operational situation p. 17
PCTL probabilistic computation tree logic p. 51
pGCL probabilistic guarded command language (GCL) p. 20
RCA root cause analysis p. 7
STPA System-Theoretic Process Analysis p. 6
STS symbolic transition system p. 8
SysML Systems Modelling Language p. 18
TUM Technical University of Munich p. 8
UoY University of York p. 8
VDM Vienna Development Method p. 7

4

Chapter 1

What is Yap and
What Can It be Used For?

Yap (short for Yap Against Perils1) is a research tool for the modelling, anal-
ysis, design, and synthesis of strategic safety controllers. The current version of
Yap can demonstrate state space modelling, exploration, and shaping as well
as symbolic simulation. One can generate minimal cut sequences (MCSeqs),
calculate risk state spaces and properties thereof, and synthesise safety con-
trollers for systems given as Markov decision processes (MDPs). The objective
of Yap is to support engineering, design, and development steps transforming
inputs from hazard analysis into strategic safety controllers. Furthermore, Yap
seeks to bridge the gap between safety goals and control applications employ-
ing highly automated and autonomous hybrid, adaptive, and model-predictive
control. However, Yap is not a general-purpose planning framework or tool.

1.1 Who is Supposed to Use Yap?
Yap is best suited to be used by, for example, systems or requirements engineers,
risk analysts, safety or assurance engineers, and control engineers dealing with
hazard analysis and risk assessment (HARA) and the design, development, and
assurance of countermeasures, particularly, in the engineering and assurance of
safety controllers for highly automated and autonomous machines (Figure 1.1).
Yap might be used by engineers responsible for

• the assurance of safety-related properties of

• hazard analysis and risk assessment of

• developing safety monitors and mitigation controllers built into

dependable machines under highly automated or autonomous control.
1Or Yap, A Planner and, formerly, Yet Another Planner.

5

6 CHAPTER 1. WHAT IS YAP AND WHAT CAN IT BE USED FOR?

Physical
Process

e.g. manufacturing
operation,

chemical process,
driving on a road

Hazard
Analysis
and Risk

Assessment
e.g. HazOp, LOPA,

DFTA, FMEA,
STPA

Yap

DSL for formal
risk modelling,
analysis, and

safety controller
synthesis

(Stochastic)
Behavioural
Reasoning

based on, e.g.
LTSs, MDPs

Figure 1.1: Exemplary workflow to be used with Yap

1.2 Some of Yap’s Underlying Principles

Safety Constraints. Safe behaviour, whether in sports, on roads, in house-
holds, etc. means staying within safety margins or envelopes, keeping key indica-
tors below safety thresholds, not exceeding safety limits, generally, maintaining
certain invariants or not violating certain safety constraints. Such constraints
emerge from past experience (e.g. incidents, accidents) and corresponding risk
analyses, carrying the assumption that the likelihood of something bad hap-
pening in periods where a constraint is violated is significantly higher than in
periods where the system is operated within the constraint.

This notion of safety seems natural, particularly, if we understand risk-averse
behaviour as being a good thing in general. Unsurprisingly, this notion has been
adopted as a best practice in most safety-critical engineering domains as early as
system accidents indicated the causes and their controllability. It was Leveson
(2012) who helped the notion of safety constraints gain much more importance
in the highly interdisciplinary field of software-based control of critical systems.
Leveson (2004) proposed to treat safety as an emergent property, in particular,
as a behaviour emerging from the interaction of the potentially many agents in
a controlled process staying within carefully formulated safety constraints.

Important questions for engineers and operators of a machine are: (i) What
are the constraints to be enforced? (ii) How can we enforce or not violate them?
(iii) How can we keep violations minimal and short? (iv) How can we verify
that an implementation enforces these constraints? Enforcement includes both
the detection of behaviours near constraint boundaries and the handling (e.g.
avoidance) of constraint violations ideally followed by the resumption of nominal
behaviour. In complex systems, the task of formulating a system-level safety
constraint will have to be broken down into identifying many local constraints
whose interrelationships are reasonably well understood in order to enforce an
overall constraint that appropriately represents what safety means for the whole
system. Moreover, several constraints may address different aspects of safety
and some of these constraints may be related and composed into compound
constraints.

A particular form of compound constraints, layered constraints, is used in

1.2. SOME OF YAP’S UNDERLYING PRINCIPLES 7

LOPA and bow tie analysis (BTA, Ruijter et al. 2016), two risk assessment
techniques applicable to systems with several layers of protection. Each of these
layers can be associated with a certain critical event (CE) (e.g. hazard) and a
corresponding safety constraint based on which certain controls or interventions
protect the system from escalating the CE to the next layer (or the next higher
level of risk). Layered constraints are useful to breakdown risk in complex
hazardous processes where several intervention points are realisable, such as in
chemical processes, food production processes and supply chains, or air or road
traffic management.

Several lines of research follow these ideas, for example, active safety mon-
itoring (Machin et al. 2018) allows one to decompose constraints into discrete
layers, and risk-sensitive control (Sanger 2014) estimates and minimises risk on
a continuous scale. Yap aims at combining such approaches and supporting the
modelling and handling of multiple hazards and the structuring of controller’s
action sets for concurrent monitoring and mitigation.

Assumption/Guarantee-style Constraints. Often we can safely constrain
machine behaviour, and effectively reduce accident likelihood only under certain
environmental assumptions. This means, the agents2 responsible for behaving
according to the specified constraints (i.e., safety requirements) must only do
so if the agents not responsible for these constraints behave according to these
assumptions. In autonomous systems, this critical responsibility has to be given
to the machine but in other systems, it is shared between the machine and the
human operator or is even entirely left to operators. Frequently, it is of interest
to keep safety assumptions weak so they account for uncertainties (Jackson 2001)
and to keep safety requirements strong while the machine remains3 useful.

Returning to Leveson’s emergent properties, safety needs to be verified of
the overall machine. Hence, local verification results need to be confidently in-
tegrated (Gleirscher, Foster, et al. 2019). Yap provides guidance for structuring
risk models as layered constraints, for formalising these models, and for making
these models amenable to verification by specialist techniques and tools.

Multi-Paradigm Analysis. Yap allows one to perform risk analysis in a
top-down and bottom-up manner. Regarding the breakdown of the control loop
into items, Yap is inspired by top-down refinement as used in methods such as,
for example, B (Abrial 2010), VDM (Jones 1986), or Z (Spivey 1989). However,
currently, Yap’s input language is based on abstract LTSs rather than relations,
which limits the refinement notions applicable. Regarding the identification
and analysis of risk factors4 Yap allows one to go forward or backward in the
causal chain, for example, starting with root causes or with near-mishaps. Risk
factors are a generalisation of faults, causal factors, failures, hazards, mishaps,

2Machine components and/or human operators, in summary, the safety or mitigation con-
troller.

3Conflicts between safety and performance frequently complicate machine implementations.
4Also called causal factor in root cause analysis (RCA) or basic event in fault tree analysis

(FTA, Ericson 2015).

8 CHAPTER 1. WHAT IS YAP AND WHAT CAN IT BE USED FOR?

incidents, and accidents. They can be composed to form risk states (Gleirscher,
Calinescu, and Woodcock 2021).

Actions rather than Signal Flow. Modern system safety analysis is heavily
based on system models. Such models can capture the structure or architecture
of a system, interaction between components of an architecture in terms of
data or signal flow. Other models concentrate on representing behaviour, as
input/output relations at the interfaces of the components, as data or control
states and transitions between such states, and as action systems or functions
for the specification or generation of such behaviour (Broy 2010).

Widely used techniques for defect, fault, or deviation (e.g. failure logic)
analysis usually adopt one or more of these concepts. For example, FMEA and
FTA, when applied to control system architectures, are typically given a signal
flow interpretation based on the system structure, with the goal of mapping
undesired (regions of) output signals (or events) to combinations of internal
faults and undesired (regions of) input signals (or events), or vice versa.

Yap is not about functional safety. Yap focuses on state-based behaviour
and events or actions causing state transitions (Gleirscher 2014). Data flow is
abstracted to a large extent, leading to the advantages and disadvantages of
symbolic transition systems (STSs). One of Yap’s core assumptions is that the
user (i.e., the analyst or engineer) can associate a measure of risk, danger, or
other negativity with (regions of) the considered state space. In practice, this
is usually the case for control applications. Readers coming from the functional
safety domain may be more familiar with the signal flow perspective.

Scalability. By allowing a high level of abstraction, Yap aims at supporting
the modelling of complex control loops, i.e., processes and controllers responsible
for obeying the given control laws.

Simplicity, Agility. Yap’s objective is to keep the modelling as simple and
abstract as possible and add information about the control loop and risk factors
ad-hoc or on-demand along with the steps of risk analysis.

In overall, Yap follows a light-weight modelling paradigm as, for example,
shown by Lamsweerde (2009) and Letier (2001). To achieve a good level of
practicality, Yap’s conceptual primitives are inspired by these and related works.

1.3 About Yap, Acknowledgements,
and Licensing

Yap is developed and maintained by Mario Gleirscher at the University of York
(UoY).5 Yap includes results of postdoctoral and PhD research at the Computer
Science Department of UoY, at the Department of Informatics of the Technical

5See www.cs.york.ac.uk.

www.cs.york.ac.uk

1.3. ABOUT YAP, ACKNOWLEDGEMENTS, AND LICENSING 9

University of Munich (TUM),6 and from cooperations with leading companies
of the automotive and software industry. Preliminary results implemented in
Yap are published in Gleirscher (2014) and in follow-up papers (Gleirscher 2017;
Gleirscher and Kugele 2017b; Gleirscher 2018). Some ideas and algorithms were
investigated between 2012 and 2016, Yap’s development, however, has started
in Spring 2017, and the formal investigation of the theory underlying Yap is
subject of ongoing research (Gleirscher, Calinescu, and Woodcock 2021).

Acknowledgements. The development of Yap was supported by the LRF
under the AAIP grant CSI:Cobot and by the German Research Foundation
(Deutsche Forschungsgemeinschaft) under the grant no. 381212925.

I would like to thank several anonymous safety practitioners for fruitful dis-
cussions and collaborations, having inspired me to develop and enhance Yap.
Moreover, I am grateful to my mentors, particularly, Manfred Broy, Radu Ca-
linescu, Ana Cavalcanti, Jan Peleska, and Jim Woodcock, and to my academic
colleagues Simon Foster, Stefan Kugele, and Diego Marmsoler for discussions
and collaborations on a variety of topics allowing me to use or develop Yap for.

Parts of Yap have been designed and developed with Apache NetBeans,
GNU Emacs, other GNU software, and Ubuntu.

Licensing. Yap Against Perils (software, documentation, demo materials)
is licensed under a Creative Commons Attribution – NonCommercial – Share-
Alike 4.0 International License (CC BY-NC-SA 4.0). You can download the de-
tailed license terms from http://creativecommons.org/licenses/by-nc-SA/
4.0/. This license is near-identical to the GNUGeneral Public License (GPLv3).
However, Yap ’s source code is currently not shared and its license does not
permit commercial use. Yap contains no third-party code and does not make
use of third-party libraries except from JDK core libraries compliant with the
Java(TM) Platform.

Copyright Notice. Sharing must be attributed with a copyright notice of
the following kind:

"YAP Against Perils" by Mario Gleirscher
is licensed under CC BY-NC-SA 4.0
License: https://creativecommons.org/licenses/by-nc-sa/4.0/
Disclaimer: http://yap.gleirscher.de/about/

Disclaimer. Yap is a prototype, a research tool, and under development.
Furthermore, none of Yap ’s artifacts are formally verified. Although I have
taken considerable care when crafting Yap, it may contain critical bugs and
incomplete or otherwise undesired features. Also, I apologise if the documenta-
tion is not fully in-sync with the software. Please, let me know if you spot any
issues related to Yap or its supportive materials.

6See http://www.in.tum.de.

http://creativecommons.org/licenses/by-nc-SA/4.0/
http://creativecommons.org/licenses/by-nc-SA/4.0/
https://wiki.creativecommons.org/wiki/ShareAlike_compatibility_analysis:_GPL
https://openjdk.java.net/
http://www.in.tum.de

Chapter 2

Yap in a Nutshell

This section provides a very compact guide to getting acquainted with Yap and
making first steps.

2.1 Installation Requirements and Suggestions
Yap requires and was developed and tested with:

• Linux operating system (e.g. Ubuntu 17.04, 18.04, 19.10, 20.04), Mac OS
(10.15.*), and Windows 10; it probably runs with a variety of older and
newer distributions as well

• Java Run-time Environment ≥ 1.81 for all core features

– Linux: e.g. package default-jre[-headless]
– Mac OS or Windows: e.g. directly from Oracle (see https://www.

java.com/en/)

• GraphViz (DOT) ≥ 2.38 with tikz option for export of risk graphs

• LATEX (pdfLATEX) with packages tikz and ctable for export of graphs
and activity traces

For using Yap, the following tools are suggested to be installed:

• Probabilistic model checker (PRISM 4.5 or newer,2 or a PRISM-compatible
tool such as STORM3) for using the optimal controller synthesis features

• GNU Emacs 25.2.x for yap-mode, a major mode for Yap

• PDF viewer for display in yap-mode (e.g. GNOME Evince, Zathura)
1This is subject to change. Yap 0.5 and newer requires Java 11 or newer.
2See www.prismmodelchecker.org.
3See https://www.stormchecker.org.

10

https://www.java.com/en/
https://www.java.com/en/
www.prismmodelchecker.org
https://www.stormchecker.org

2.2. GETTING AND INSTALLING A COPY OF YAP 11

• pdftk for compilation of activity traces into a single file
In Mac OS, the package managers macports4 and homebrew5 make GraphViz,
LATEX, GNU Emacs, and PDF viewers available. For Windows, I can recom-
mend Cygwin.6 Please, let me know if you want to help me testing Yap on
Mac OS X or Windows.

2.2 Getting and Installing a Copy of Yap
Currently, you can obtain Yap as a

• ZIP (or TAR.GZ) package via the URL

http://yap.gleirscher.de/dl/yapp_VERSION.zip

and to be installed in any directory of convenience.

• DEB package to be installed with

sudo apt-get install default-jre-headless jarwrapper gawk \
java-common openjdk-11-jre-headless libsigsegv2 \
binfmt-support fastjar ca-certificates-java

sudo wget http://yap.gleirscher.de/dl/yapp_VERSION_all.deb
sudo dpkg -iG yapp_VERSION_all.deb

and de-installed with

sudo apt-get purge yapp

This package has been tested with Ubuntu 18.04, 19.10, and 20.04. The
DEB package contains a man page yapp(1) and a Java wrapper script
yapp.

Both packages contain this manual, a collection of example files, and the main
binary yapp.jar. The example files to be used with this manual are located
in the folder

• examples of the ZIP package, or

• /usr/share/yapp/examples after installation from the DEB package.
Because /usr/share is normally read-only for non-root users, it is recommended
to copy these files into a directory ∼/yapp-examples and to have Yap generate
any output from the commands mentioned in this manual into a folder ∼/yapp-
examples/output.
Note 1 To avoid confusion with the Prolog implementation yap, Yap packages
and executables carry the name yapp for “Yap Against Perils Package.” I will
need a few more to resolve this issue at some point.

4See https://www.macports.org.
5See https://brew.sh.
6See https://cygwin.com.

http://yap.gleirscher.de/dl/yapp_VERSION.zip
https://www.macports.org
https://brew.sh
https://cygwin.com

12 CHAPTER 2. YAP IN A NUTSHELL

2.3 First Steps in Using Yap
The following list provides a few easy steps to run Yap and get acquainted with
its command line interface (CLI).
Note 2 You may invoke Yap by calling yapp (the wrapper script), java -jar
yapp.jar (the binary; both installed from the DEB package), or java -jar
yap.jar (the binary available from the ZIP package). In the following, we
assume that the DEB package was installed and show only the first option.

1. Follow the advice in Section 2.2 by copying the content of the examples
directory into ~/yapp-examples/ and change to that directory.

2. Get command-line help with

yapp --help

For details on the CLI options used below, see Section 2.4 and Table 2.1.

3. To parse the example activity start and to show the parsed and consoli-
dated model, type

yapp -m autodrv/start.yap -o output/start.parsed \
-f latex -v 1 -l 2 -s --simulate random \
--showmodel raw

4. To run a simulation with the settings defined in the file start.yap, type

yapp -m autodrv/start.yap -o output/start.dot \
-f latex -v 1 -l 2 -s --simulate random

5. To run the same simulation and output a risk graph for each step of the
simulation run, type

yapp -m autodrv/start.yap -o output/start.dot \
-f latex -v 1 -l 2 --simulate random

5a. To transform the risk graph for the activity leaveParkingLot into PDF,
given this activity was visited during simulation, type

dot2tex --autosize --figpreamble="\\large" -c -f tikz \
-t raw -o output/start-2-leaveParkingLot.tex \
output/start-2-leaveParkingLot.dot

pdflatex -output-directory=output/ \
output/start-2-leaveParkingLot.tex

5b. To transform the simulation run (currently, a LATEX table) into PDF, type

pdflatex -output-directory=output/ output/simrun-start.tex

Have fun with Yap!

2.4. THE YAP COMMAND-LINE INTERFACE 13

2.4 The Yap Command-Line Interface
In general, you can call Yap via

yapp -m <FILE> [OPTIONS]

to write results to the standard output. Alternatively, the call

yapp -m <FILE> -o <OUT> [OPTIONS]

writes results into the output file OUT. Yap’s CLI accepts the switches listed
and explained in Table 2.1. The options -v (verbosity level) and -l (logging
level) can be useful for model debugging. Features enabled via the --simulate Experimental!
switch might change significantly in the future.

In MS Windows, from the demo folder of the extracted ZIP package, one can
call Yap with

C:\jdk13.0.1\bin\java -jar yapp.jar -m .\examples\<FILE>.yap \
-o .\examples\output\<OUT>.dot

Table 2.1: Switches available through Yap’s command line interface

Short/long Option Description Default

Options

-a --activity
ACT

Start simulation from activity ACT. By default, the
activity to start with will be chosen from the pa-
rameter FILE provided with the option -m.

--clear-logs Clear log file before start. false
-d --design

monitor-
only|single-
event|-
multi-event-
sequential|-
multi-event-
concurrent

Choose the basic design of the synthesised con-
troller. Currently, Yap offers the options: monitor-
only, single-event, and multi-event-concurrent, ex-
plained in more detail in Gleirscher (2020).

multi-
event-
concurrent

--force Override internal sanity checks, e.g. do not check
program version when parsing a model.

false

-f --format
latex|plain|-
prism

Generate either LATEX or plain dot output. PRISM
experimental!

latex

--global-
logging

Store log messages in the global file
/.yap/yap.log in the user’s home directory.

true

-l --log-level
0|1|2|3

Log level N > 0 creates log file FILE.log,
where 1 / SEVERE … 3 / ALL.

SEVERE

-m --model FILE Use configuration from file or path FILE.
--nosimplify do not apply rules for reduction of risk structure

complexity beyond the constraints specified in the
factor model. Currently, the only rule in place
is mis (Gleirscher 2018), constructing equivalence
classes of mishap states and re-routing transitions
to class representatives.

true

cont’d on next page

14 CHAPTER 2. YAP IN A NUTSHELL

Table 2.1: Switches available via the command line interface of Yap (cont’d)

Short/long Option Description Default

-o --output FILE Direct output (e.g. dot) into file or path FILE. output.yap
--severity Calculate severity for the whole risk space. false

-t --target-
model
TARGETFILE

where TARGETFILE contains an external (e.g.
PRISM) model to be used for synthesis

input.txt

-v --verbosity-
level 0|1|2|3

For option -o, add details to nodes and edges (e.g.
mitigation embodiment, state severity) of the risk
graph.
Produce more detailed output with the options -f,
-m, -s. The detail level N > 0 signifies the amount
of information produced depending on the context.

0

Commands

-h --help Show help on command-line parameters. false
--mincs Calculate and output all minimal cut sequences

from the initial state to all registered mishap fac-
tors.

false

--showlogs
no|all|follow

Print all log file contents or follow tail of the log
file.

no

--showmodel
no|raw|-
activities|-
dft

Show model parsed from FILE (raw), DOT graph
of activities (activities), or a dynamic fault tree
(DFT) (dft). Suppress model (no).

no

-r --simulate
no|initial|-
random

Suppress simulation (no). Plan only for a specific
activity (e.g. operational situation) of the activity
automaton (initial). Run multi-step simulation of
a sequence of activities by randomly resolving non-
determinism in the activity automaton (random).

initial

-s --statistics Show information about risk structure generated
from the model in FILE.

false

--synthesise
no|all|-
controller

Suppress synthesis (no). Synthesise the controller
(controller).

no

--taxonomy Generate LATEX taxonomy of endangerments and
mitigations, cf. Figures 3.2 to 3.4 and Table A.1.

false

--version Show version information. false

2.5 Editing Yap Models in Emacs with yap-mode

Currently, there is a rudimentary Emacs major mode yapp.el included

• in the root directory of the ZIP package or

• in /usr/share/yapp/ after installing the DEB package.

Add the following two lines to your .emacs to automatically enable that mode
for yap files in your Emacs environment:

1 (autoload 'yap-mode pkgpath ”Major␣mode␣for␣YAP␣script␣files” t)
2 (add-to-list 'auto-mode-alist '(”\\.yap\\’” . yap-mode))

2.5. EDITING YAP MODELS IN EMACS WITH YAP-MODE 15

Key Binding Description

C-h m Display PDF manual for help.

C-x C-a a Generate activity graph from current buffer.
C-x C-a b Build artefacts for current buffer.
C-x C-a c Generate safety controller model.
C-x C-a f Generate fault tree from current buffer.
C-x C-a p Simulate a random path through the activity graph, generate a LATEX

table showing some statistics of the simulation run, and risk graphs for
each of the steps shown in this run.

C-x C-a r Generate risk structure from current buffer.
C-x C-a s Adjust format and viewer settings.

C-x C-d c Display minimal cut sequences.
C-x C-d g Display existing graphs generated from current buffer with the specified

PDF viewer (e.g. evince, zathura).
C-x C-d l Display Yap log file associated with current buffer.
C-x C-d m Display model associated with current buffer.
C-x C-d p Convert DOT file to PDF and display PDF.
C-x C-d s Display current format and viewer settings.

Table 2.3: Emacs key bindings available in yap-mode

where, for example,

pkgpath = "/usr/share/yapp/yapp.el" or
pkgpath = "~/.emacs.d/lisp/yapp.el".

yap-mode currently supports syntax highlighting for Yap scripts, auto-indent-
ation from the standard c-mode, as well as several key bindings (cf. Table 2.3)
for executing some of the more frequently used command-line calls of Yap.

By default, generated artefacts will be placed in the sub-folder output of
the directory with the currently open .yap file. Global logging is by default
activated (see Table 2.1) and, when switched off, places log files in the same
directory as the .yap file in the current buffer.

yap-mode aims to increase interactivity between the user and Yap models
during the modelling process. Once an appropriate model is found, Yap’s syn-
thesis artefacts are supposed to be used in the down-stream controller design
and development process.

In yapp.el, you may adjust several parameters such as, for example, logging,
the default PDF viewer via yap-viewer or the default output directory via
yap-outdir with the help of a rudimentary step-through wizard in the Emacs’
mini-buffer.7

7I haven’t had a lot of time yet for implementing an easy to readjust Emacs mode. Also
my knowledge of Lisp has its limits. So, if you happen to have technical suggestions for
improvement, please, don’t hesitate to help out with a corresponding Lisp snippet.

Chapter 3

Yap’s Input:
Activities, Factors, and
the Control Loop

For an appropriate conduct of its analyses, Yap requires information about
relevant activities (Section 3.1), the control loop (Section 3.2), and relevant risk
factors (Section 3.3).

For the following, we will assume to have an initially empty file called ex-
ample.yap. Using this file, you can build your own Yap script while following
the examples discussed in this guide. In general, a Yap script file can contain
the following fragments (or compound directives):

1 [Settings { <Body> }] # single line comment
2

3 [Activity [activityId] { <Body> }]
4

5 // another single line comment
6 [ControlLoop loopName [for activityId] { <Body> }]
7

8 [FactorModel [for activityId] { <Body> }]
9 /* a multi-line

10 comment */

Note 3 For describing the model syntax, we use <Identifier> to denote
structured non-terminals, <A|B> to signify choice among A and B, [A] to say
that A is optional, and [A]∗ that A can occur zero or more times. Occasionally,
we specify syntax using Backus-Naur form rules introduced with “::=”.

Note 4 Keywords are case-insensitive for the parser but identifiers are
case-sensitive. Keywords may not be used as identifiers. You can stick with

16

3.1. THE ACTIVITY MODEL 17

all-lower- or all-upper-case to avoid any confusion. Yap script supports Bash-
and C-style (multi-line) comments. The default identifier for activity, control
loop, and factor specifications is the name of the main .yap file provided to Yap.

Below, we will first discuss the directives Activity, ControlLoop, and
FactorModel. The Settings part will be discussed later in Section 4.2. Most
of the examples shown in this manual focus on the domain of highly automated
and autonomous driving. However, Yap should be equivalently useful for many
application domains where techniques such as HazOp, LOPA, STPA, or BTA
are practised.

Note 5 Technically, a Yap file can be empty, only leading to a warning about
missing factor specifications when being processed. However, it is up to the user
to decide about the usefulness of an empty model.

3.1 The Activity Model
First, Yap has to be provided with an activity model,1 an abstraction of the
control loop representing the processes running (or performed) in this loop.
Yap supports the composition of activities into an activity automaton. For the
classification of parts of the controlled process, we will use the term aspect. The
partitioning of processes into aspects or activities requires domain and expert
knowledge. It is out of the scope of this manual to dive into the details of
this step. However, activities can be decomposed according to the concurrent
and sequential processes comprising the loop, for example, “supply power”,
“driving”, “operate vehicle.” Such processes often determine the functionality
of a system (Broy 2005, 2010).

Currently, Yap supports sequential composition and superposition of activ-
ities (see Section 5.3 for further details). Parallel composition is currently not
possible. The activity model is a state-labelled finite automaton representing
activities from an overall view of the controlled process. This view can be taken
by a safety or mitigation controller synthesised from a Yap model. In summary,
an activity model has to be crafted such that the considered process is faithfully
described by performing one activity at a time.

In the file example.yap, the directive

1 Activity [activityId] {
2 <Body>
3 }

declares an activity labelled with activityId. Body describes the context of this
activity and can be empty. Body can use the directives

• description (or its short form desc) for adding an informal description
of the activity,

1At your convenience, this can be operational situations (OSs) to be mastered, tasks to be
performed, user-level system functions to be applied.

18 CHAPTER 3. YAP’S INPUT

• include for

– superposition of an activity with the present activity,
– multiple inheritance to reuse model information from other Yap

files taking the role of libraries,

• successor for sequential composition of another activity performed
after the present activity,

• initialState for specifying the risk state from which the exploration ofdefault:
0 the risk structure (Section 4.1) and mitigation planning will take place.

1 Activity [activityId] {
2 [<desc|description> ”text”;]
3 [<include|successor> activityPath;]∗

4 [initialState (rfId:phase[, rfId:phase]∗);]
5 }

The rfId:phase pairs have to refer to an existing factor identifier rfId (Sec-
tion 3.3) and use phase ::= <0|a|m|_> to specify the initial phase for the
associated risk factor (Section 4.1).

Currently, Yap will parse one activity per file. For each identifier activity-
Path, Yap expects a file activityPath.yap to exist in the current or corre-
sponding directory. Accordingly, activityPath can be either an activityId or a
path ending with an activityId without the suffix .yap.

Example 1 (Modelling the Controlled Process) The following script ap-
plies the directives include and successor.

1 Activity parkWithRemote {
2 include driveAtLowSpeed;
3 successor autoLeaveParkingLot;
4 successor leaveParkingLot;
5 }
6

7 ControlLoop myRoboCar for parkWithRemote {}
8

9 FactorModel for parkWithRemote {}

Figure 3.1 visualises this Yap script fragment using a flavour of Systems Mod-
elling Language (SysML, Friedenthal et al. 2014) state charts. We will discuss
the other directives in the activity model below and in Section 4.2. 2

3.2 The Control Model
In addition to the activity model discussed in the previous section, Yap can
be provided with a more detailed and more technical model of the process of

3.2. THE CONTROL MODEL 19

 driveAtLowSpeed

parkWithRemote

autoLeaveParkingLot leaveParkingLot

Figure 3.1: Activity fragment of the process declared in Example 1

interest to be controlled, also called the application, the plant, or the control
loop. In example.yap, this can be declared by

1 <ControlLoop|Application> [loopId [for activityId]] {
2 <Body>
3 }

For the easier modelling of complex systems, the primitives provided in Yap
script support the engineer in maintaining a higher level of abstraction. For
example, Body provides directives to specify behavioural modes of the control
loop and physical items (or entities) embodying these modal behaviours.

1 ControlLoop [loopId [for activityId]] {
2 [mode modeId ... [embodiedBy itemId];]∗

3 [[item] itemId ...;]∗

4 }

Details on how to specify modes are explained in Section 3.2.1 and the spec-
ification of items is described in Section 3.2.2.

Note 6 In Yap script, we specify attributes in the form

entity attributeName [attributeValue] ';'

and relationships in form of

entity relationshipName entity ';'
entity relationshipName '(' entity [',' entity]* ')' ';'

where, for attributeValue, string literals are bracketed by "…", for exam-
ple, "a string" and numbers as is by, for example, 123. attributeName and
relationshipName refer to predefined Yap keywords. Furthermore, entity ref-
erences, such as itemId, have to be strings without white-space characters.

3.2.1 Mode Specifications
In Yap, three abstractions play together in a specific way. We have already
discussed the first abstraction, the activity model in Section 3.1. Yap scripts
contain risk models for the specified activities. Like activities, risk is modelled as

20 CHAPTER 3. YAP’S INPUT

a kind of abstract state machine. The second abstraction comprises the notions
of risk phases, factors, states, and spaces, capturing the state-based thinking
of dependability engineers and risk analysts. The third abstraction extends
these notions with abstract events and their refinements—operations, actions,
or commands—, especially, of type nominal, endangerment, and mitigation.
This abstraction is relevant for control engineers designing safety controllers for
a particular machine.

Abstract state machines are action systems. Actions, more precisely, guarded
commands are the units of behaviour we want to reason about. Such commands
can themselves be complex programs. In Yap, actions are described in terms of
modes. We use the term mode because a risk structure is not only in a particular
activity and risk state but also in a particular mitigation mode.2

Modes specify mitigations, are useful for safety controller synthesis, and can
be specified as part of the controller (Section 3.2) in the following way.

1 ControlLoop loopId {
2 ...
3 [mode modeId [alias modeName]
4 [<desc|description> ”text”]
5 [role actionType]
6 [event eventName]
7 [<cause|guard> ”embedded␣expression”]
8 [update ”embedded␣expression”]
9 [target (param=val[, param=val]∗)]

10 [embodiedBy itemId]
11 [param=val]∗;]∗

12 ...
13 }

modeId uniquely identifies the action, modeName can be used to provide an
easier to understand identifier, and with desc, an informal description can be
added. The role attribute refers to an actionType according to Table A.1.
Currently, these classifiers informally characterise the modal behaviour and are
used to generate transition labels in risk graphs output by Yap if more specific
information is not available.

Controller synthesis requires that the controller to be synthesised is inter-
acting with a wider system responsible for the nominal low-level or supervisory
control of the machine. Yap currently supports PRISM’s probabilistic GCL
(pGCL, Kwiatkowska et al. 2007) following the communicating sequential pro-
cesses (CSP, Hoare 1985; Roscoe 2010) approach to concurrent system design.
That is, corresponding guard and update expressions can be embedded into a
mode via the guard and update directives.

When specifying mitigations, cause and update can be used to specify what
is often called a safety function responsible to remove the cause or causal factor

2I am inclined to change this terminology at some point but, mathematically, it does not
matter which symbol we assign to this concept as long as we do it coherently.

3.2. THE CONTROL MODEL 21

from a currently active critical event or hazard. When specifying resumptions,
guard and update can be used to specify the inversion (e.g. switching off) of
this safety function if guard holds. Often guard will be the negation of cause.

The event directive can be used to specify synchronisations with machine
modules external to the safety controller. All guarded commands with the same
eventName are then executed synchronously.

If the wider system, the controller is embedded into, models the application
in terms of activities (Section 3.1) and can be operated in several so-called
safety modes (see, e.g. ISO/TS 15066 2016), then Yap provides the further
directive target. target extends update, playing a special role in controller
synthesis. The param=val pairs in target are used to synthesise the controller
logic. With the above assumptions, one can specify by act=a a target activity
0, the controller switches the machine to as part of a mitigation. Similarly, one
can specify by safmod=sm a target safety mode B<, the controller switches the
machine to as part of a mitigation. See the example in Gleirscher (2020).

Obviously, for these two parameters to work properly, the surrounding ma-
chine model must know about B< and 0. For example, the machine must have
an act-conjunct enabling certain commands in certain activities together with a
logic switching between the activities according to the needs of the application.
This switching is external to the safety controller but can be influenced by it.
Analogously, B< must be implemented as a safmod-conjunct in the machine’s
commands, enabling and disabling subsets of commands in particular safety
modes, with the difference that switching between safety modes falls under the
sole responsibility of the safety controller. This concept has been elaborated
and demonstrated in (Gleirscher and Calinescu 2020).

Further param=val pairs can be added to a mode specification to describe
certain characteristics of the modal behaviour. Yap’s synthesis facility currently
supports integer parameters such as disruption and effort, useful to quantify
the disruption of the nominal process and the effort to be spent when activat-
ing the corresponding mitigation mode. These parameters are then converted
into reward structures used by tools such as PRISM for the search of optimal
policies (Gleirscher and Calinescu 2020).

In summary, modes refine the STS with the risk state space and the three
main classes of events (i.e., endangerments, mitigations, risk-neutral actions).
Particularly, modes are a way to specify actions that refine these events into a
composition of factor phase changes, activity or task changes, other changes of
situational parameters.

Finally, the embodiedBy directive uses an itemId to indicate that a mode
is implemented by a particular item. The item specifications required for this
directive to work are described in the next section.

3.2.2 Item Specifications
In Yap script, items can be used to model the physical structure of the control
loop.

22 CHAPTER 3. YAP’S INPUT

1 ControlLoop loopId {
2 ...
3 [[<item|asset>] itemId [alias itemName]
4 [<desc|description> ”text”]
5 [role itemType]
6 [partOf itemId]
7 [hasFunction modeId]
8 [poweredBy (itemId[, itemId]∗)]
9 [param=val]∗;]∗

10 ...
11 }

The following attributes and relationships can be used to specify items.

• alias: used to provide an easier to understand itemName for this item,

• description: attaches a free-text description,

• role: refers to an itemType according to Table A.2,

• partOf: specifies that this item is a part of another item,

• hasFunction: specifies that this item embodies the mode modeId,Experimental!

• poweredBy: specifies that this item requires an energy source that is pro-Experimental!
vided by another item.

• The param=val pairs can be used in a way similar to their use in mode
specifications (Section 3.2.1).

The control loop identified by loopId is the top-level item and every item defined
in this control loop is part of this loop. asset is a synonym for a particular
form of item useful for impact modelling in risk assessments.

Example 2 (Control Loop Fragment for “supplyPower”) The loop frag-
ment for the aspect “supplyPower” consists of an item Pwr referring to the pri-
mary energy supply of the controller. Pwr is a physical part of the item Ve, the
vehicle. Bat refers to a battery as the alternative energy source. Finally, an
item Ctr is declared, powered by at least one out of the two energy sources Pwr
and Bat.

1 ControlLoop supplyPower for supplyPower {
2 mode pwrFailure embodiedBy Pwr;
3 mode switchToBat embodiedBy Bat;
4

5 Ve alias Vehicle;
6 Pwr alias PrimaryEnergySource
7 partOf Ve;
8 Bat alias Battery
9 partOf Ve;

3.3. THE FACTOR MODEL 23

10 Ctr poweredBy (Pwr, Bat);
11 }

3.3 The Factor Model
In Yap, one can specify faults, causal factors, hazards, incidents, accidents, or
other mishaps and their relationships, usually known from HARA (Section 1.2).
The risk factor is Yap’s primitive used for this kind of risk modelling.

In our file example.yap, a factor model3 is introduced through:

1 FactorModel [for activityId] {
2 <Body>
3 }

Note 7 Although the specification of one factor model per Yap file is op-
tional (cf. Chapter 3), Yap expects to have a non-empty factor model after
having parsed all included Yap files.

In Body, you can specify factors relevant for the activity activityId by using
several directives.

1 FactorModel [for activityId] {
2 [rfId [alias factorName]
3 [<desc|description> ”text”]
4

5 [direct]
6 [offRepair [(<rfId[, rfId]∗>|*)]]
7 [<final|incident|accident|mishap>]
8

9 [<requires|requiresNot> (<rfId[, rfId]∗|*>)]
10 [requiresNOf (lb '|' rfId[, rfId]∗['|' ub])]
11 [<requiresMit|requiresOcc> (rfId[, rfId]∗)]
12 [excludes (<rfId[, rfId]∗|*>)]
13 [causes (rfId[, rfId]∗)]
14 [permits (rfId[, rfId]∗)]
15 [prevents (rfId[, rfId]∗)]
16 [preventsMit (rfId[, rfId]∗)]
17 [mitPreventsMit (rfId[, rfId]∗)]
18

19 [guard ”embedded␣expression”]
20 [<activatedBy|detectedBy> (actionSpec[, actionSpec]∗)

]
21 [mitigatedBy (actionSpec[, actionSpec]∗)]

3Also called “hazard model” in earlier versions of Yap and for downward compatibility.

24 CHAPTER 3. YAP’S INPUT

22 [resumedBy (actionSpec[, actionSpec]∗)]
23 [alleviatedBy (actionSpec[, actionSpec]∗)]
24

25 [impacts (assetId interval[, assetId interval]∗)]
26 [param=val]∗;
27]∗

28 }

Similar to other modelling primitives in Yap script, alias specifies an easier
to memorise factor name and description attaches a free-text description to
the factor. Moreover, a factor specification can contain directives describing
relationships with other factors useful for risk space exploration:

• causes specifies that the activation of a factor is propagated and ac-
tivates other risk factors. Note that this constraint can be overridden by
prevents constraints.

• requires specifies that the activation of a risk factor requires other factors
to be activated in advance or simultaneously,

• requiresNOf specifies that the activation of a factor requires = ∈ [;1..D1]
out of a range of < specified factors to be activated in advance or
simultaneously, with the lower bound lb ∈ [0..D1] and the upper bound
ub∈ [;1..<].

• requiresNot specifies that the activation of a risk factor requires other
factors to be deactivated in advance,

• requiresMit specifies that the activation of a factor requires another fac-
tor to be mitigated in advance.

• requiresOcc specifies that the activation of a factor requires another fac-
tor to have occurred, that is, to be either activated or mitigated in
advance. However, if that other factor has been deactivated again, this
constraint will evaluate to false.

• permits specifies that the activation of any of the given factors is explic-
itly permitted if this factor is activated. Such permission acts as a weak
form of the causes constraint or the dual of requires, and overrides any
other constraint (such as prevents) that tries to inhibit the activation of
the given factors. Hence, permits has to be used carefully when crafting
a risk model.

• excludes specifies that the activation of a risk factor superposes or
invalidates another risk factor.4

• prevents specifies that the activation or mitigation of this factor pre-
vents (or inhibits) the activation of other factors. Note that this con-
straint can be overridden by permits.

4Unlike prevents constraints, excludes constraints do not override causes constraints.

3.3. THE FACTOR MODEL 25

• preventsMit specifies that the activation or mitigation of a factor
prevents the mitigation of other factors.

• mitPreventsMit specifies that the mitigation of a factor prevents the
mitigation of other factors.

In summary,

permits overrides prevents and prevents overrides causes,

meaning that a factor f1 that is permitted by another factor f2 can occur even
if its causation by a factor f3 is prevented by a factor f4.

Moreover, requires and requiresMit constraints are stronger than re-
quiresOcc. Either of these two will by conjunction overrule requiresOcc. Also
note that it is possible to specify inconsistent constraints, for example, f2 requi-
res f1 conjoined with f2 requiresMit f1 will never allow f2 to be activated.

Several directives fundamentally determine how a risk factor is interpreted
when unfolded for risk space exploration:

• direct specifies that a factor can be mitigated in one step, without visiting
an intermediate state5.

• offRepair is the opposite of direct and specifies that a factor can only
be mitigated by putting the machine out of order, for example, for the
duration of a repair task. The optional list of identifiers (rfIds) specifies
factors that will be deactivated (i.e., reset) when an offRepair mitigation
is performed. Use the wildcard * to include all non-inactive (i.e., active
or mitigated) factors. By default, an offRepair mitigation includes this
factor and other factors only if they are also repairable off-line.

• Factors are by default mitigable and resumable (e.g. repairable). However,
the switch final can be used to specify that a factor can only be activated,
that is, the detection of the corresponding endangerment is the only event
that matters, no actual/dedicated mitigations are performed. In other
words, this switch declares a factor to be a Boolean variable that can only
be switched to true, with one exception:
Note that final blocks the mitigation of all factors it requires, for exam-
ple, for a factor specification f1 requires(f2)final;, in all states where
f1 and f2 are active f1 will block the mitigation of f2.

• mishap and, for convenience, its two synonyms incident and accident,
specify that this factor when activated terminates risk space exploration.

Further types of constraints will be included in future version of Yap. Further-
more, a factor specification can contain directives carrying details for controller
design and synthesis:

5The intention behind direct is to model run-time behaviour such as fail-operational be-
haviour.

26 CHAPTER 3. YAP’S INPUT

• activatedBy specifies that a factor is activated by a specific action (e.g.
an endangerment) performed by a specific item (e.g. an uncontrollable
agent in the machine’s environment). The synonym detectedBy stresses
that this action is recognised or detected as an endangerment, for example,
by sensors of a safety monitor built into the machine. For that, the mode
referred to is embodied by items of type SENSOR (Table A.2).

• mitigatedBy specifies that an activated factor is mitigated by specific
actions performed by specific items.

• resumedBy specifies that a factor, after having been mitigated, allows the
machine to perform specific actions to inactivate that factor and resume
nominal operation.

• alleviatedBy specifies that a mishap that has been caused by that factor
can be alleviated by performing specific actions.

• guard attaches an expression (e.g. a PRISM state predicate) with the
activation condition for this factor, based on the state space of a lower-
level model (e.g. a pGCL model for PRISM). guard is used as an auxiliary
directive and does not require the specification of modes as opposed to the
*By directives.

References to modes (i.e., actions) of the control loop (Section 3.2.1) are specified
in the form actionSpec ::= actionClass[.modeId]|.modeId.

• activatedBy (and detectedBy) may refer to a single endangerment of
class actionClass from Figure 3.3, which is identified by modeId.

• mitigatedBy, resumedBy, and alleviatedBy may refer to one or more
mitigation, resumption, and alleviation options of class actionClass from
Figure 3.4, each identified by modeId.
Note 8 Moreover, several factors can refer to the same mode. This gives
rise to mitigation requirements for a mode. Any mode implementation
referred to or embedded in the mode specification has to be capable of
performing mitigations of all the factors associated with this mode. For
example, if mode M is referred to from the two factors F1 and F2 then M
is required to be applicable to any risk state with any subset of these two
factors activated and perform the maximum possible mitigation, that is,
to mitigate or (in case of direct) deactivate as many factors as possible.

If actionClass is left out,6 it defaults to ENDANGER, MITIGATE, RESUME, or
ALLEVIATE respectively (Table A.1). If modeId is left out then the whole di-
rective is semantically ignored but may be useful during modelling. The same
modes can be used across different factor specifications.

Finally, a factor specification can contain directives for quantitative risk
analysis:

• impacts specifies one or more negative consequences, each described inExperimental!
6Note that for correct parsing, the “.” currently needs to remain in front of modeId.

3.3. THE FACTOR MODEL 27

pc

em e

see Figure 3.3

m

see Figure 3.4

Figure 3.2: Taxonomy of actions; symbols are described in Table A.1 in Ap-
pendix A.1

e

enm

nmcnt nmfll nmbmp nmcll nmhit

emu

eatt

eint

ed

ddst

ef

frnd

fwo dupf fftg

fdep

Figure 3.3: Taxonomy of endangerments; symbols are described in Table A.1 in
Appendix A.1

m

ms

...

mc

unc

uncrnd uncexp

me

r

roff ron

mmnt

mi

...

ms

mdes

desprv

prve prvc prvlcp

lcpv lcplh

prvn prvrp

desstb

ml

matt

attalv

mprt

prtacc prtlck

fs

fsfop

fopfb

fsfsi

fsisd

Figure 3.4: Taxonomy of mitigations; symbols are described in Table A.1 in
Appendix A.1

28 CHAPTER 3. YAP’S INPUT

terms of an interval (see Section 3.5 for interval specifications) quantify-
ing the range of materialised impacts on a specific asset assetId when
this factor is activated. To model the overall impact on a collection of
assets, they can be composed into a single compound asset using partOf
directives (Section 3.2.2).

• Factor specifications allow, like other Yap script primitives, the addition
of parameter-value pairs according to Section 3.5.
Yap’ synthesis facility currently makes use of prob and sev, two parame-
ters translated into a stochastic model for quantitative risk analysis. For
example, prob=0.05 states that there is a 5% chance of a mishap oc-
curring from the corresponding factor being either unrecognised (i.e., a
transition from its inactive phase to its mishap phase) or active and not
mitigated (i.e., a transition from its activated phase to its mishap phase).
Moreover, sev=5 states that a mishap creates a general impact on not
specified entities in the height of 5 “units of negativity.” This way of using
Yap is illustrated in more detail in Gleirscher and Calinescu (2020).

Below, we will see a number of examples that show how these directives can be
used in factor specifications.

Example 3 (Yap Script for the Aspect “supplyPower”) Based on Exam-
ple 2, Listing 3.1 shows the corresponding Yap script. The factor model specifies
the following risk factors:

• lowOrNo-Fuel (F) describes states where a vehicle is soon running out of
fuel or has already done so. The directive offRepair abstracts from the
necessity of taking or pulling the vehicle to a petrol station. Here, the use
of this directive suggests that the refill must take place while the vehicle
is out of order.

• lowOrNo-Energy (E) describes states where, the vehicle controller is not
supplied with sufficient electric power. activatedBy (FAIL.pwrFailure)
specifies an endangerment of class FAIL (i.e., a failure) observed as the
event pwrFailure, which activates E, and embodied by the item Pwr.
mitigatedBy (FALLBACK.switchToBat) provide a mitigation of class FALL-
BACK performed by switchToBat and embodied by Bat. Finally, offRepair
describes that this factor can only be completely reset after putting the
vehicle out of operation.

• lowOrNo-Battery (B) specifies states where battery-based energy supply
has ceased to work. requires (E) states that B only occurs in case of fail-
ure of the primary energy supply, that is, E. This abstraction includes two
assumptions: the battery is continuously charged by Pwr and we neglect
other causes of B, such as a broken battery or wire. 2

Example 3 indicates how HARA techniques such as HazOp and FTA deliver in-
formation to be coded into Yap models: The requires constraint is an example

3.4. IMPACT MODEL 29

Listing 3.1: Yap script for the aspect “supplyPower”
1 Settings {
2 suppressMishaps=false;
3 }
4

5 Activity {}
6

7 ControlLoop supplyPower {
8 mode pwrFailure embodiedBy Pwr;
9 mode switchToBat embodiedBy Bat;

10

11 Ve alias Vehicle;
12 Pwr alias PrimaryEnergySource
13 partOf Ve;
14 Bat alias Battery
15 partOf Ve;
16 Ctr poweredBy (Pwr,Bat);
17 }
18

19 FactorModel {
20 F alias lowOrNo_Fuel
21 offRepair;
22 E alias lowOrNo_Energy
23 activatedBy (FAIL.pwrFailure)
24 mitigatedBy (FALLBACK.switchToBat)
25 offRepair;
26 B alias lowOrNo_Battery
27 requires (E);
28 }

of a piece of information possibly included from an FTA of the vehicle energy
supply system. Furthermore, the factors F, E, and B share the common pre-
fix “lowOrNo”, showing an example of how one can apply HazOp guide-words,
such as “too low” and “no”, to the item Ctr of the vehicle’s controller fragment
supplyPower.

3.4 Impact Model
For quantitative risk assessment, Yap supports the specification of impacts from
the activation of risk factors. Impact specifications are like constraints optional
fragments of factor specifications and take the following form: Experimental!

1 FactorModel { ...

30 CHAPTER 3. YAP’S INPUT

2 rfId ...
3 [impacts (itemId [interval][, itemId [interval]]∗)]
4 [prob = Numeric];
5 }
6 ControlLoop { ...
7 asset itemId ...;
8 }

With the keyword impacts, one can associate an arbitrary number of con-
trol loop items (Section 3.2.2) defined as assets (i.e., humans, animals, environ-
ments, valuables of any kind) potentially negatively impacted after an activation
of the factor rfId. The severity of the consequences from this activation, that
is, the actual impact, is provided in terms of an interval (Section 3.5) that
denotes the range of the best and worst expected impact. The likelihood can
be given by a probability prob (numeric, ∈ [0..1], Section 3.5). Risk A is then
often calculated as a combination (in simpler cases merely a multiplication):
A = prob · sev, resulting in a risk interval.

Consider the following brief example of a chemical process with a valve -

that when burst would cause poisonous bulk material to flow into a safe area:

1 FactorModel {
2 VX desc ”valve␣X␣bursts”
3 mishap
4 impacts (BM [5.2..10], A [8..17.3], O [10..50]);
5 }
6 ControlLoop {
7 asset A desc ”clean␣and␣safe␣area”;
8 asset BM desc ”poisonous␣bulk␣material”;
9 asset O desc ”health␣impairments␣of␣operators”;

10 }

Here, we consider a threefold impact: the loss of bulk material valued from 5.2 to
10 negativity (or loss) units, the pollution of the clean area leading to cleansing
costs in the height of 8 to 17.3, and health impairments of operators (10 to 50
injury units).

3.5 Parameter-Value Pairs
For activities (Section 3.1), control loops (Section 3.2), modes (Section 3.2.1),
items (Section 3.2.2), and factors (Section 3.3), one can specify a collection of
parameter-value pairs of the form ParamId '=' Value where

• ParamId is a unique alphanumeric identifier starting with a letter,

• Value ::= Numeric | String | Interval,

• Numeric ::= [0-9]+['.'[0-9]+]?,

3.5. PARAMETER-VALUE PAIRS 31

• String ::= '"' Text '"' where Text is free-text not using the special
characters ()[]{};,"', and

• Interval ::= '[' Numeric '..' Numeric ']' .

Note 9 Although, for convenience, Yap script allows one to omit a leading 0
in floating point values (e.g. you can write x = .1 for x = 0.1) and to omit
quotes for strings without white-space (e.g. you can write s = thisIsAString
for s = "thisIsAString"), such omissions are not encouraged. I will consider
cancelling the support of this feature.

Chapter 4

Yap’s Output:
Risk Structures

After having modelled factors for a specific control loop in a specific activity (see,
e.g. Listing 3.1), we can use Yap to explore and output what we call a risk
structure (Gleirscher, Calinescu, and Woodcock 2021). Again, we assume to
have followed the advice in Section 2.2 and all example files are in the directory
~/yapp-examples/. Then, we run Yap for the activity supplyPower using the
command

yapp -m autodrv/supplyPower.yap \
-o output/supplyPower.dot \
-f latex -v 2 --simulate initial --nosimplify

and get a risk graph as an output. On the command line in your terminal, you
should see something like

Memory usage: 10139920 bytes / 9 MiB
YAP's processing took 0.02 sec.
YAP processing information logged in autodrv/supplyPower.yap.log.

and the corresponding log file will contain something like

2020-09-11 08:56 CONFIG | Finished parsing command-line
arguments.

2020-09-11 08:56 INFO | Arguments:
-m autodrv/supplyPower.yap -o output/supplyPower.dot -f latex
-v 1 --simulate initial

2020-09-11 08:56 CONFIG | Starting YAP 0.6+20200911 ...
2020-09-11 08:56 INFO | Identified control loop "supplyPower"
for activity "supplyPower".

2020-09-11 08:56 CONFIG | No individual settings found. Applying
default settings, see manual.

32

33

RiskStructure-supplyPower-supplyPower from state 0RiskStructure-supplyPower-supplyPower from state 0RiskStructure-supplyPower-supplyPower from state 0RiskStructure-supplyPower-supplyPower from state 0RiskStructure-supplyPower-supplyPower from state 0RiskStructure-supplyPower-supplyPower from state 0

e0,m2

EF

e0,m0

F

e0,m0

EF

e0,m2

B

e0,m0

BF

e0,m0

BE

e0,m1

EF

e0,m0

BF

e3,m0

BEF

e0,m1

BEF

e1,m0

E
e0,m2

BE

e0,m0

BEF

e0,m0

EF

e0,m0

BF

e0,m1

F

e1,m0

BF

e0,m0

EF

e0,m1

BE

e2,m0

EF

e1,m0

F

e0,m2

BF

e0,m0

BEF

e0,m3

BEF

e0,m1

EF

e0,m2

BEF
e2,m0

BE

e0,m0

BEF

e1,m0

BF

e0,m0

BEF

e0,m1

BF

e0,m1

E
e0,m0

E

e0,m4

B

e0,m1

BEF

e0,m2

BEF

0

e0,m0

B

e0,m0

BE
e0,m0

BEF

switchToBat

mF
s

pwrFailure

eFm

switchToBat.rF

pwrFailure

rF

eBm

e
supplyPower

F

pwrFailure

mB
s

rE

mB
r

e
supplyPower

F

pwrFailure

mB
r

pwrFailure

mB
r

switchToBat

pwrFailure

pwrFailure

switchToBat

rF

switchToBat

mB
r

mB
s

e
supplyPower

F

e
supplyPower

B

mB
r

pwrFailure

eFm

e
supplyPower

F

mF
s

mB
r

switchToBat

mB
r

eBF
m

pwrFailure

mB
s

e
supplyPower

B

e
supplyPower

F

eBm

pwrFailure

mB
smF

spwrFailure

mB
s

eFm

mF
s switchToBat

e
supplyPower

F

pwrFailure

rF

pwrFailure

rE .rF

e
supplyPower

F

mF
s

switchToBat.rF

pwrFailure

pwrFailure

mB
rmB

s

rE .rF

pwrFailure

switchToBat.rF

pwrFailure

pwrFailure

eFm

e
supplyPower

F

mF
s

e
supplyPower

B

mF
s

mB
r

mF
s

rE .rF

Figure 4.1: Risk graph generated by Yap from Listing 3.1 and representing the
risk structure for supplyPower

2020-09-11 08:56 CONFIG | Finished parsing model file(s).
2020-09-11 08:56 CONFIG | Log level now set to SEVERE.

To transform this graph into a PDF file, we can use the commands

dot2tex --autosize --figpreamble="\\large" \
-c -f tikz -t raw -o output/supplyPower.tex \
output/supplyPower.dot

pdflatex -output-directory=output \
output/supplyPower.tex

After using these commands, we should get a risk structure compliant with
the graph shown in Figure 4.1. The file supplyPower.yap is included in the
demonstration package, see Section 2.2.

34 CHAPTER 4. YAP’S OUTPUT: RISK STRUCTURES

Phase Name Label in Risk Graph …in Yap Script

inactive 0f 0
active f a
mitigated f m
mishap f _

Table 4.1: Phases of the risk factor f and their labelling

4.1 Understanding Risk Structures
Risk graphs visualise risk structures. It is time to establish a brief understanding
of the semantics of risk graphs, such as the one in Figure 4.1. As shown there, a
risk structure can be represented by a labelled directed graph. Risk structures
are built by composing the phase models of the risk factors (Section 3.3)
identified and relevant to a specific activity (Section 3.1). More elaborated
phase models have been used. The basic phase model of a factor f consists of
the four phases shown in Table 4.1.

Preliminary results of the algebraic theory underlying the construction of risk
structures are published in Gleirscher (2014, 2017) and Gleirscher and Kugele
(2017a,b) and further developed in Gleirscher, Calinescu, and Woodcock (2021).

Nodes. We distinguish several kinds of nodes in a risk graph, in other words,
we consider several kinds of risk states in a risk structure:

• 0: the (locally) “safest state” with none of the factors being activated. For
the sake of brevity, given X,Y,Z are not inactive, we simplify every label
“X0fi Y 0fj Z” to a label “XYZ” or, if empty, to “0”.

• Undesired events: labelled with factors in either their active or mitigated
phases. In Figure 4.1, the superscript 4# in each node signifies the number
of combined endangerments that have led to this state, <# denotes the
number mitigations applied so far, where # ∈ N0.

• Mishaps: states that represent an unacceptable event (e.g. an incident or
accident), indicated in red. The factor, say f, that is supposed to be the
most influencing factor is switched to its mishap phase f .

Transitions. We distinguish the following types of edges in a risk graph, in
other words, transitions in a risk structure:

• Endangerments: red solid edges denote actions of type ENDANGER.

• Mitigations: green, dark green, and black edges signify actions of type
MITIGATE.

• Mishaps: red dotted edges denote actions of type MISHAP.

4.2. SETTINGS CONTROLLING YAP’S OUTPUT 35

e0,m1

E
e0,m0

E

e1,m0

E

0

eEm

ef
Pwr

E

mE
e

fopfb
Bat

E

Figure 4.2: Phase model instantiated for the risk factor � from Example 3

Table A.1 in Appendix A.1 refines these categories into an action taxonomy.
Furthermore, the edge labels in the graph correspond to the symbols given in
the Symbols column of this table unless the labels can be derived from modes
referred to from a factor specification (Section 3.2.1).

Figure 4.2 summarises the elements of a risk structure described so far in a
smaller and more easily readable example.

Embodiment. We have already made use of a further modelling element
in Example 3: the concept of embodiment of an action, particularly, the im-
plementation of an endangerment or mitigation. For example, the transition
labelled with

ef
Pwr

E
specifies that the failure e

5
activating the factor E stems

from (electro-physical) behaviour embodied by the item Pwr. Moreover, the
transition labelled with fopfb

Bat

E
specifies that the fail-operational behaviour (fop)

is realised by a fallback (fb) embodied by a managed hand-over to the item Bat.

4.2 Settings Controlling Yap’s Output
In any Yap script, the compound directive

1 Settings {
2 <Body>
3 }

can be used to adjust a range of settings that Yap takes into account when
performing simulations, exploring and reasoning about risk structures, and syn-
thesising controllers. In Body, you can use directives according to the syntax
specified in the following listing.

1 Settings {

36 CHAPTER 4. YAP’S OUTPUT: RISK STRUCTURES

2 [<outputDepth
3 | endangermentDepth
4 | mitigationDepth
5 | simulationLength> = natNumber;]∗

6

7 [<suppressMishaps
8 | suppressEndangerments
9 | suppressMitigations

10 | suppressResumptions> = <true|false>;]∗

11

12 [<suppressMishaps
13 | suppressEndangerments
14 | suppressMitigations
15 | suppressResumptions> = <true|false>;]∗

16

17 [allFactorsDirect = <true|false>;]
18

19 [<suppressStateLabel
20 | suppressMishapLabel
21 | suppressEndangermentsLabel
22 | suppressMitigationsLabel> = <true|false>;]∗

23

24 [grayscale = <true|false>;]
25 [graphDirection = direction;]
26 [extFile = path;]
27 [requiredVersion = ”prefix”;]
28 }

natNumber must be a non-negative integer, that is, a number in N0. Yap
generates risk structures always from a given initial risk state.

• allFactorsDirect, if true, declares all factors registered in the model todefault:
false be direct (Section 3.3).

• endangermentDepth [0..MAX]1 specifies the maximal number of factorsdefault:
0 (maximum) activated (whether sequentially or simultaneously) in a risk state at the

same time. 0 specifies the exploration of the full endangerment space.

• mitigationDepth [0..MAX] specifies the total number of mitigations takendefault:
0 (maximum) into account (in sequence or simultaneously) when planning a mitigation

strategy. 0 specifies the exploration of the full mitigation space.

• simulationLength [0..MAX] specifies the number of steps to be executeddefault:
5 out of a scenario or run of a controlled process (Section 3.1), 0 and 1 are

equivalent to --simulate initial.

• outputDepth [0..MAX] specifies the depth of the exported risk graphdefault:
0 (maximum) 1MAX is currently equivalent to the JDK constant Short.MAX_VALUE = 32767.

4.2. SETTINGS CONTROLLING YAP’S OUTPUT 37

measured as the path length from the initialState (by default state 0,
see Section 3.1). 0 specifies the export of the full graph.

• riskDiscount [0..1] specifies the discount parameter for calculations of default:
1.0the discounted expected risk (Sections 3.4 and 5.5).

Furthermore, to control the parts of a risk structure to be included in the output,
Yap provides the following switches:

• suppressEndangerments, if true, suppresses all endangerment transitions default:
falsein the risk graph.

• suppressMitigations, if true, suppresses all mitigation transitions in default:
falsethe graph.

• suppressMishaps, if true, suppresses the annotation of the risk graph default:
truewith mishap states.

• suppressResumptions, if true, suppresses all transitions leading to phase default:
false0f of a risk factor f.

The combination of suppressMitigations and suppressResumptions ensures
that a risk structure is composed of loop-free phase models (i.e., acyclic factor
semantics), resulting in an acyclic risk structure and risk graph.

Switches of the kind suppress*Label are useful to control details of the default:
falsegraphical output, for example, labels of specific classes of states and edges.

The setting graphDirection allows the adjustment of the GraphViz dot default:
BTsetting for the layout direction of a graph (e.g. BT, TB, LR, RL where B, T, R,

L stand for bottom, top, right, and left).
With the setting grayscale, Yap only uses grayscale for risk graphs. default:

falseThe setting extFile can be used to specify the path to an external template
file for controller synthesis, and requiredVersion allows one to indicate that default:

version of the used
Yap binary

the model at hand is to be processed by specific versions of Yap. Particularly,
prefix is matched with the version string of the installed Yap binary.

Example 4 (Reducing Risk Graphs, Yap’s Output) Given the file sup-
plyPower.yap, for example, setting suppressEndangerments to false in risk
state 0 would lead to an empty risk structure as there is no risk state a mit-
igation can be applied to, see Figure 4.3a. As an alternative to Figure 4.1,
we chose to omit mishap states by using suppressMishaps = true leading to
Figure 4.3b. Furthermore, with suppressResumptions = true we obtain Fig-
ure 4.3c. Finally, suppressMitigations = true results in a risk graph reduced
to the set of undesired events directly reachable by all possible combinations of
endangerments or factor activations respectively, see Figure 4.3d. 2

38 CHAPTER 4. YAP’S OUTPUT: RISK STRUCTURES

0

(a)

EB

FE

FE

FEB

FE

F

FEB

FB B

E

B

FB

FEB

FEB E

EB

FEB

0

FEB

FB

EB

FB

F

FE

mF
s

eEf

mB
s

eEf

mF
s

mF
s

mF
s

eEf

eEf

fopEfb

mB
s

rE

eF

eF

eB

fopEfb

eEf

fopEfb

eB

eEf

fopEfb

eF

eB

mF
s

mB
e

eEf

rEF

mB
e

rF

eEf

mF
s

mB
e

mB
s

eF

eF

rEF

rEF

rF

fopEfb

mB
e

rF

mF
s

mB
s eEf

rEF

mB
s

mB
e

eF

mB
s

eF

mB
e

mF
s

mB
e

mB
e

rEF

eF

rEF

fopEfb

mB
e

(b)

FEB

EB

EB

FEF

F

FEB

0

FE

FEB

FE

FEB

EB

E

FEBFEB

E

FE

eEf

mF
s

mF
s

eEf

mF
s

eF

eB

fopEfb

fopEfb

eB

fopEfb

eB mF
s mB

s

eF

eF

fopEfb

mF
s

mB
s

fopEfb

eFfopEfb

eFeEf

mF
s

eF

mB
s

(c)

FE EB

0

FEB

EF

eB

eEf

eB eF

eF

eEf eF

(d)

Figure 4.3: Suppressing parts of a risk graph

Chapter 5

Working with Yap

Yap’s output can be used to perform two important steps in risk analysis prior
to the development of safety controllers and run-time mitigation planners:

• the reduction and shaping of risk structures (Section 5.1) and

• the simulation of scenarios of the controlled process (Section 5.2).

Additionally, this section discusses several aspects relevant when working with
Yap, for example, property inheritance (Section 5.3), using wildcards (Sec-
tion 5.4), inspecting risk spaces, and finally, mitigation orders (Section 5.5).
The generation of safety controllers as conceptualised in Gleirscher and Cali-
nescu (2020) is explained in Gleirscher (2020).

5.1 Reduction and Shaping of Risk Structures
As introduced in Section 3.3, dependencies between risk factors can be speci-
fied in terms of constraints, such as causes, prevents, requires, or excludes.
Many examples in this manual make use of constraints and provide the corre-
sponding rationale for their use, for example, Example 3 or Listing 3.1.

It is beyond the scope of this manual to describe methodological aspects
of why, when, and where to use these directives. However, these directives
support the shaping and simplification of risk structures for run-time mitigation
planning. A more fundamental treatment of constraints is presented in the work
of Gleirscher, Calinescu, and Woodcock (2021).

5.2 Performing Symbolic Simulation
Let us assume that we have created a bunch of Yap scripts for a controlled
process, each script file modelling an activity, and activities superimposed us-
ing include directives and connected using successor directives (Section 3.1).

39

40 CHAPTER 5. WORKING WITH YAP

Consider the autodrv case study, which is an example of such complexity.
There, we can type

yapp -m autodrv/start.yap \
-o output/start.dot \
-f latex -v 0 -l 1 --simulate random -s

to run a random simulation starting from the activity start.
Then, Yap step by step picks a random successor until the simulation-

Length (Section 4.2) is reached and, for each step, constructs a risk structure.
Currently, for demonstration purposes, Yap randomly picks a risk state to jumpExperimental!
to when performing the next simulation step. In our case, Yap starts with the
activity described in the file start.yap.

Example 5 (Symbolic Simulation) Table 5.1 shows a simulation run using
the following settings:

1 Settings {
2 outputDepth = 2;
3 endangermentDepth = 1;
4 mitigationDepth = 1;
5 simulationLength = 20;
6 suppressMishaps = true;
7 suppressEndangerments = false;
8 suppressMitigations = false;
9 suppressResumptions = true;

10 }

Consider the various risk states jumped into (column “Initial State”) and that
the endangerment complexity (columns “#States” and “#Trans.”) of some of
the steps includes 10 factors. This run took about 0.5 sec. 2

Yap’s algorithm for risk space exploration performs a breadth-first search
through the reachable risk space. Here, reachability is defined by the con-
straints used in a Yap model. This procedure corresponds to the construction
of reachability graphs in explicit-state model checking, with the main difference
that Yap’s constraint mechanism only covers a small fragment of the expres-
sions allowed in guards of propositional GCL. Moreover, Yap does not carry
through any property checking. Obviously, Yap’s algorithm is exposed to the
state space explosion problem of explicit-state model checking (Baier et al. 2008).
Section 6.2 highlights some implications of that problem for Yap.

5.3 Property Inheritance and Superposition of
Sub-Models

This section discusses a few aspects to deal with when crafting larger models
encompassing several Yap files.

5.3. PROPERTY INHERITANCE AND SUPERPOSITION OF SUB-MODELS41

Table 5.1: Simulation run showing 20 steps. Values in parentheses indicate that,
for start.yap, risk structure generation was omitted

Step Operational Situation #CFs Initial State #States #Trans.

1 start (0) (0) (1) (0)
2 leaveParkingLot 3 �� 5 5
3 driveAtL1Generic 10 ��$� 197 452
4 manuallyPark 3 ��� 3 2
5 autoLeaveParkingLot 3 � 11 14
6 driveAtL4Generic 10 ��$=)$�A � 638 1564
7 autoOvertake 10 �$,=��=)$� 1192 3294
8 driveAtL4Generic 10 $=��=�%=)$�A � 487 1226
9 exitTunnel 10 �$,=�=)$�A � 1171 2999
10 driveAtL4Generic 10 $,=�=)$� 908 2127
11 driveThroughCrossing 10 �$,=� 1005 2380
12 driveAtL1Generic 10 ��$,��>! 68 158
13 manuallyPark 3 � 11 12
14 autoLeaveParkingLot 3 �� 6 6
15 driveAtL4Generic 10 �$,=�A � 1803 4760
16 driveThroughCrossing 10 �=��=)$� 1075 2940
17 driveAtL1Generic 10 $,=�>! 762 2029
18 manuallyPark 3 �� 6 6
19 leaveParkingLot 3 � 7 7
20 driveAtL1Generic 10 �$, 362 942

The include directive allows for a superposition of activity and factor mod-
els (Sections 3.2.1 and 3.3). Moreover, this directive enables the inheritance of
properties (e.g. factor specifications) from included Yap files. Yap supports
multiple inheritance. Because Yap files can be recursively included, large mod-
els can contain an inheritance hierarchy.

Inheritance through superimposition works on both activity and factor mod-
els. For example, if activity A includes another activity B then A inherits all
model fragments of B, particularly, the activity model with its successor di-
rectives, the factor model, the control loop model, and potential settings. Im-
portantly, only A will remain in the activity model as a base activity. Notice
that the inheritance of B by A will not have any impact on activities connected
from A via successor directives.

Moreover, a factor specification, say of factor f, in activity B will become a
factor specification of A. If f already exists in A, the fragment of f in A will be
merged and overwritten by the fragment of f in B. The crafting large models
with these mechanisms may benefit from include as an abstraction facility.
However, the use of this facility still implies care for maintaining model validity.

Yap collects settings globally via the Settings directive (Section 4.2). Dif-
ferently from the factor models, which are specific to a basic activity constructed
by include only, settings and control loop fragments are collected in a single
place when recursively traversing the include and successor directives.

42 CHAPTER 5. WORKING WITH YAP

5.4 Using Wildcards
The use of wildcards is in the same way convenient and intricate. This is so
because of an anyway relatively high level of abstraction risk structures are
supposed to be used for. Wildcards can be seen as a way of dynamic constraint
typing, hence, making constraints more concise and more powerful on the one
hand but leading to a less obvious semantics on the other. Currently, wildcards
can be used with the following constraints:

• requires: The expression f requires (*) signifies that the activation of
factor f requires the activation of all other factors specified for this activity
except for f itself.

1 // Using wildcards
2 Activity wildcard {}
3

4 FactorModel for wildcard {
5 M requires (*)
6 mishap;
7 B; // explicit default

specification
8 C requires (B);
9 D prevents (B);

10 }
BD

BCD

BD

BCD

BCD

B

BD

BC

BCDBC

0

BCD

BCD BC

BCD

B

BD

BCD

BCD

D

M

BD

BCD

BD

D

BD

BCD

D

BC

BC

B

eD

mC
e

mB
s

eBm

mC
e

mB
s

eM

mD
s

mD
e

mD
s

mB
s

mB
e

mD
s

mD
e

eDm

mC
s

eBD
m

eD

eDm

mD
eeBC

m

mB
e

eC

mC
e

eBCD
m

mC
e

mB
s

mD
e

eB

eD

mC
s

eC

mB
s

eD

eC

eBm

eBm

mD
e

mD
e

mC
s

mC
e

mB
e

mD
s

mD
s

eDm

eBC
mmB

s

mD
seD

eD

eBD
m

mC
e

eBm

• excludes: The expression f excludes (*) signifies that factor f, once
activated in a particular risk state, cuts any further analysis from that
state.

• offRepair: The expression f offRepair (*) states that factor f needs to
be mitigated by putting the machine out of order and that the mitigation
of f fully mitigates all other factors as well.

5.5 Enumerating and Ordering Risk Spaces
The 40 nodes in Figure 4.1 are risk states of the risk structure explored for
the activity supplyPower. The states can be ordered by decreasing risk or
severity level using a concept called mitigation order (Gleirscher and Kugele
2017b). Currently, Yap calculates a refined version of the strong mitigation
order (Gleirscher, Calinescu, and Woodcock 2021). This is a linear order over
risk states based on severity intervals over floating-point numbers provided for
each factor as shown in Listing 5.1.

Listing 5.1: Activity supplyPower from Listing 3.1 extended by severity intervals
1 FactorModel {

5.6. DISPLAYING ACTIVITY GRAPHS 43

2 F alias lowOrNo_Fuel
3 offRepair
4 sev=[5..10];
5 E alias lowOrNo_Energy
6 activatedBy (FAIL.pwrFailure)
7 mitigatedBy (FALLBACK.switchToBat)
8 offRepair
9 sev=[1..6];

10 B alias lowOrNo_Battery
11 requires (E)
12 sev=[2..7];
13 }

With the command

yapp -m autodrv/supplyPower-sev.yap \
-o output/supplyPower-sev.dot \
-f latex -v 1 --simulate initial --nosimplify --severity

Yap enumerates the 40 states explored and ordered by descending risk/severity
level or priority. The result for the example in Listing 5.1 is stored in a file
suffixed with _riskspace.txt, for example, supplyPower_riskspace.txt.

No. State Severity
1 BEF [5.0..10.0]
2 BEF [5.0..10.0]
3 EF [5.0..10.0]
4 BF [5.0..10.0]
5 F [5.0..10.0]
6 BF [5.0..10.0]
7 EF [5.0..10.0]
8 F [5.0..10.0]
9 BF [2.0..10.0]
10 BF [2.0..10.0]
11 BEF [1.0..10.0]
12 BEF [1.0..10.0]
13 EF [1.0..10.0]

14 BEF [1.0..10.0]
15 EF [1.0..10.0]
16 BEF [1.0..10.0]
17 B [2.0..7.0]
18 BF [2.0..7.0]
19 B [2.0..7.0]
20 BF [2.0..7.0]
21 BEF [1.0..7.0]
22 BE [1.0..7.0]
23 BEF [1.0..7.0]
24 BE [1.0..7.0]
25 BEF [1.0..6.0]
26 BEF [1.0..6.0]
27 BE [1.0..6.0]

28 BE [1.0..6.0]
29 EF [1.0..6.0]
30 E [1.0..6.0]
31 EF [1.0..6.0]
32 E [1.0..6.0]
33 F [0.0..0.0]
34 E [0.0..0.0]
35 0 [0.0..0.0]
36 BEF [0.0..0.0]
37 BE [0.0..0.0]
38 B [0.0..0.0]
39 BF [0.0..0.0]
40 EF [0.0..0.0]

5.6 Displaying Activity Graphs
For models with an elaborate activity structure based on the successor and
include relation, Yap allows one to generate an activity graph such as the one
in Figure 5.1. Such graphs highlight the structure of the basic activities (blue
nodes) created by the successor relation (solid edges) as well as the factor

44 CHAPTER 5. WORKING WITH YAP

model inherited from more general activities (gray nodes) via the include re-
lation (dashed gray edges). By using the CLI switch -v 1, you can add legend
labels to the activity graph for better readability.

5.6. DISPLAYING ACTIVITY GRAPHS 45

st
ar
t

le
av
eP
ar
ki
ng
Lo

t

au
to
Le

av
eP
ar
ki
ng
Lo

t

dr
iv
eA

tL
1G

en
er
ic

dr
iv
eA

tL
4

ha
lt

dr
iv
eA

tL
4G

en
er
ic

au
to
O
ve
rta

ke
dr
iv
eT

hr
ou
gh
C
ro
ss
in
g

ex
itT

un
ne
l

m
an
ua
lly

O
ve
rta

ke

op
er
at
eV

eh
ic
le

dr
iv
eA

tL
1

dr
iv
eA

tL
ow

Sp
ee
d m
an
ua
lly

Pa
rk

pa
rk
W
ith

R
em

ot
e

st
ee
rT
hr
ou
gh
Tr
af
fic

Ja
m

re
qu
es
tT
ak
eO

ve
rB
yD

r

dr
iv
e

ba
si
c

su
pp
ly
Po

w
er

Figure 5.1: Activity graph generated from start.yap in Section 5.2

Chapter 6

FAQ, Troubleshooting, and
Limitations

I appreciate any reports about bugs in Yap, illustrative examples, and feature
requests. Please, report to

mailto:mario-dot-gleirscher-at-tum-dot-de.

However, please, take into account that, due to further professional obligations,
I cannot provide any guarantee on when or whether at all corresponding fixes
and extensions will get introduced in Yap.

6.1 Frequently Asked Questions and
Troubleshooting

Frequently Asked Questions. None reported or relevant so far.

Model Debugging and Further Troubleshooting. For some mistakes in
using the CLI (though, in more obvious and general cases), Yap will provide
you with error messages right on the command line.

For further mistakes in the CLI or in Yap scripts (e.g. model incomplete-
ness and inconsistencies), Yap appends information about its internal process-
ing (e.g. warnings, error messages, notes about processing steps) to a log file:

• By default, this log file is associated with the FILE specified via the CLI
option --model, see Section 2.4. Accordingly, you will find a file called
FILE.log in the directory with the corresponding Yap script.

• If the CLI option --global-logging is provided, the log file is stored in
the user’s home directory, in Linux under ~/.yap/yap.log.

Furthermore, you can raise the log level using the option --log to get more
detailed information.

46

mailto:mario-dot-gleirscher-at-tum-dot-de

6.2. KNOWN LIMITATIONS AND BUGS 47

6.2 Known Limitations and Bugs
The following list highlights some technical and methodological limitations.

1. Yap is a research tool prototype with demonstration and proof-of-concept
as its preliminary design goals and, thus, exhibits a number of algorithmic
complexity issues that can be reduced, and a number of optimisations in
time and memory consumption that have not yet been applied. Fixes to
part of these issues are known and on my agenda.

2. For controller synthesis, Yap collects fragmented factor specifications in
one place. Fragments in neighbouring activity specifications can overwrite
each other’s shared factor attributes, which is not usually desirable. The
reason for this behaviour are some constraints in the way model data is
currently handled internally.
The easiest fix is to keep factor specifications in one place, preferably, in
the most general included activity file.
However, for activity graph traversal and risk space exploration, frag-
mented factor specifications will be composed locally per activity via the
inclusion/inheritance hierarchy. Hence, overwriting occurs only, and as
usually desired, downwards the inclusion hierarchy, that is, factor frag-
ments in sub-activities overwrite factor fragments in super-activities.

3. Yap does neither parse external target models syntactically nor seman-
tically. Hence, the procedure explained in Gleirscher (2020) is coming
along with specific expectations on how the target model needs to be
structured (e.g. using template parameters in appropriate locations) and
requires the engineer to encode part of the “glueing information” into the
Yap model. This is certainly sub-optimal but hopefully acceptable for a
proof-of-concept tool freely available.

Bugs. No relevant unfixed bugs known so far.

Appendix A

More Technical Details

This section of the manual provides details about Yap required for its more
in-depth usage.

A.1 Taxonomy of Actions
Table A.1 provides the currently supported list of action types. Please, refer to
Section 3.3 or Section 3.2.1 for the usage of action types.

Table A.1: Comprehensive list of currently supported action types

actionType Symbol Description of the Action Type

PHASECHANGE pc Class encompassing all action classes.
SKIP No operation. In CSP, termination.
UNDEFINED The undefined action.
ENDANGER e Class of all endangerment actions or critical events.
MISHAP em Mishap actions leading to risk states (i.e., unde-

sired events such as accidents or incidents) from
where there is (currently) no feasible or acceptable
mitigation.

FAIL ef Fault actions modeling transient or permanent ran-
dom faults.

DISTURB ed Disturbance actions, e.g. abrupt perturbation, un-
foreseen obstacle, sensor noise.

MISUSE emu Unintentional and intentional maloperation.
SHARE esh Human-machine or human-robot collaboration tak-

ing place in physically shared space. Critical share
events might also result from overlapping trajecto-
ries forming on-collision-course situations.

NEAR_MISHAP enm Actions exhibiting reducible events, e.g. collisions
which can be alleviated, near-collisions on the road.

ATTACK eatt Attack actions, e.g. IT attack, soft or physical at-
tack.

INTRUDE eint Intrusion actions, e.g. traceable unauthorized ac-
cess.

cont’d on next page

48

A.1. TAXONOMY OF ACTIONS 49

Table A.1: Comprehensive list of currently supported action types (cont’d)

actionType Symbol Description of the Action Type

FAIL_DEPENDENTLY fdep Fault actions modeling compound events without
modeled causes, e.g. common cause, common
mode, single point, multiple point, cascading faults.

FAIL_RANDOMLY frnd Fault actions modeling semi-systematic faults, e.g.
basic events in fault-trees.

FAULT ef2 Envisaged cause of failure (see 4 5).
WEAR_OUT fwo Fault actions characterizing wear-out, deteriora-

tion, material fatigue, or decay.
FATIGUE fftg Fault actions representing operator fatigue.
UNDERPERFORM dupf Fault actions modeling currently unacceptable per-

formance, e.g. delayed execution.
CONTAMINATE nmcnt Actions for modeling contamination of areas with

hazardous materials.
COLLIDE nmcll Actions for modeling collisions of valuable assets.
HIT nmhit Actions representing that valuable assets are hit by

hazardous objects.
FALL nmfll Actions modeling valuable assets falling from haz-

ardous height.
BUMP nmbmp Actions representing passive collisions of valuable

assets.
DISTRACT ddst All kinds of distraction of human operators.
MITIGATE m Class of all mitigation actions, i.e., for hazard treat-

ment, intervention, pre-emption
START_MITIGATE ms Class of mitigations not automatically leading to

original phase, i.e., initiations of mitigations.
INTER_MITIGATE mi Class of multiple step mitigations.
RESUME mr Class of successful completions for partial mitiga-

tions.
COMPLETELY_MITIGATE mc Class of mitigations directly returning from the ac-

tive to the inactive phase.
FAIL_SAFE fs Class of mitigations dealing with defect treatment.
DE_ESCALATE mdes Actions preventing from the occurrence of (or de-

escalating) a hazardous event or situation.
PROTECT mprt Actions protecting valuable assets by access restric-

tion, e.g. safety barriers.
REPAIR r Actions dealing with the repair of a causal factor,

e.g. a fault, and its consequences.
DO_MAINTENANCE mmnt Actions representing maintenance, e.g. for mitiga-

tion of early-stage causal factors.
UNCONTROLLED unc For modeling externally, randomly mitigated causal

factors, out of the scope of the controller.
EXPECTED uncexp Actions modeling expected but uncontrolled causal

factors, e.g. passive collisions.
RANDOM uncrnd Actions modeling random but uncontrolled causal

factors, e.g. passive collisions whose frequency is
known.

ATTENUATE matt Actions representing attenuation mechanisms in
general, e.g. car airbag.

CONTROL_ACCESS prtacc Actions modeling restricted access to a valuable as-
set, e.g. block access to rooms, IT infrastructure,
HMI controls.

cont’d on next page

50 APPENDIX A. MORE TECHNICAL DETAILS

Table A.1: Comprehensive list of currently supported action types (cont’d)

actionType Symbol Description of the Action Type

INTERLOCK prtlck Actions controlling physical access to shared re-
sources like such as rail tracks, road crossings, flight
route segments, collaborative work spaces by mech-
anisms e.g. road traffic lights, train interlocking
systems, air traffic control.

ALLEVIATE attalv Actions encompassing mechanisms for passive
safety, e.g. airbag, safety belt, bumper.

MAINTAIN_STABILITY desstb Actions representing stabilization mechanisms in
the control loop, e.g. ESP, DSC.

PREVENT desprv Actions preventing from the occurrence of a hazard
event or situation, e.g. highly attentive driver.

LIMIT ml Actions limiting potentially hazardous control ac-
tions or usage of physical actuators, e.g. ABS.

EVACUATE prve Actions performing evacuation of a dangerous area.
PREVENT_CRASH prvc Actions modeling active or preventive safety, e.g.

distance control, collision avoidance, metric reach
avoid control, emergency braking.

PREVENT_LOSSOFCONTROL prvlcp Actions reducing risk of de-stabilization by, e.g.
maintenance of remote or internal control.

NOTIFY prvn Warning actions, e.g. (digital) road signs for vehi-
cle/driver, warning indicator lights for driver and
environment, warnings for pilots.

CHECK_VIGILANCE lcpv Mechanisms for vigilance checking, e.g. dead man
switch, driver fatigue detection.

LIMP_HOME lcplh Mechanisms for short- or medium-term (minimum
risk) navigation to a safe location.

H2M_HANDOVER lcpho Hand over to human operator when preconditions
for controller usage cease to be met.

REPAIR_OFFLINE roff Actions repairing causal factors requiring shutdown
of the control loop.

REPAIR_ONLINE ron Actions repairing causal factors during operation of
the control loop.

RESTART rrst Actions resetting or restarting parts of the con-
troller, e.g. in case of soft errors.

FAIL_SILENT fsfsi Actions representing mechanisms for deactivating
or shutting down parts of the controller.

FAIL_OPERATIONAL fsfop Actions representing mechanisms for maintaining
functionality of the controller by, e.g. redundancy,
degradation, fail-over (via many design tactics),
hand over to human operator on machine failure,
take over from human operator on operator failure.

SHUTDOWN fsisd Actions dealing with systematic shutdown or de-
activation, e.g. emergency halt or stop. Restart
actions are not taken into account here!

FALLBACK fopfb Actions representing degradation to a backup com-
ponent of the controller.

A.2 Taxonomy of Items
Table A.2 shows the currently supported list of item types. Please, refer to
Section 3.2.2 for the usage of item types.

A.3. PROPERTY LIBRARY 51

Table A.2: Comprehensive list of currently supported item types

Item Type is a/is part of Description of the Item Type

UNSPECIFIC item role not specified
CONTROL_LOOP UNSPECIFIC the overall controlled process
ACTOR CONTROL_LOOP an active entity performing actions in the loop
AGENT ACTOR synonym for actor
CONTROLLER AGENT controller responsible for safety functions
PLANT AGENT a collection of machines, robots, and other in-

stallations
HUMAN_OPERATOR CONTROL_LOOP a human operator working in the plant
SENSOR CONTROLLER generic sensor for sensing everything
ACTUATOR CONTROLLER
COMPUTING_UNIT CONTROLLER
NETWORKING_UNIT CONTROLLER
HMI_CONTROL SENSOR
HMI_DISPLAY ACTUATOR
SOFTWARE_COMPONENT COMPUTING_UNIT
ENVIRONMENT UNSPECIFIC a passive entity of any kind
REGION ENVIRONMENT a spatial entity, a geometric area or volume,

typically stationary
MOBILE_OBJECT ENVIRONMENT mobile objects of any kind
VEHICLE MOBILE_OBJECT vehicles of any kind
WORK_PIECES ENVIRONMENT countable manufacturing artefacts
MATERIAL ENVIRONMENT uncountable bulk material, fluids, or powders
OPTICAL SENSOR
RESISTIVE SENSOR
CAPACITIVE SENSOR
INDUCTIVE SENSOR
ACCUSTIC SENSOR
MECHANICAL SENSOR
THERMOELEC SENSOR
MAGNETIC SENSOR
PIEZOELEC SENSOR
LIGHTBARRIER INDUCTIVE light barrier sensing objects crossing
RANGEFINDER INDUCTIVE
LIDAR SENSOR
RADAR SENSOR
LASER SENSOR
SONAR ACCUSTIC
TACTILE SENSOR
TSBUTTON TACTILE touch-sensitive button
FSRESIST TACTILE force-sensing resistor or potentiometer
MICROPHONE SENSOR
CAMERA OPTICAL

A.3 Property Library
Table A.3 provides a comprehensive overview of Yap’s library of properties,
for example, probabilistic computation tree logic (PCTL) properties for MDP
verification.

52 APPENDIX A. MORE TECHNICAL DETAILS

Ta
bl
e
A
.3
:
C
om

pr
eh
en
siv

e
lis
t
of

pr
op

er
tie

s
fo
r
co
nt
ro
lle
r
ve
rifi

ca
to
n

P
ro

p
er

ty
Id

:
P

ro
p

er
ty

T
ag

s
D

es
cr

ip
ti

on
of

P
ro

p
er

ty

DE
AD

LO
CK

_F
RE

ED
OM

_I
NI

TI
AL

:
A

[
G

!"
de

ad
lo

ck
"

]
MO

DE
L_

TE
ST

IN
G

C
an

a
de

ad
lo

ck
be

re
ac

he
d

fr
om

th
e

in
it

ia
ls

ta
te

?

EX
PE

CT
ED

_S
EV

ER
IT

Y_
UB

:
R{

"r
is

k_
se

v"
}<

=s
[

S
]

NO
N_

PA
RA

ME
TR

IC
Is

th
e

av
er

ag
e

ex
pe

ct
ed

se
ve

ri
ty

in
th

e
lo

ng
-r

un
no

gr
ea

te
r

th
an

p?

HA
ZA

RD
_P

OS
S:

fi
lt

er
(e

xi
st

s,
E

[
F

"R
F"

],
"i

ni
t"

)
SI

NG
LE

_E
VE

NT
C

an
ha

za
rd

R
F

oc
cu

r
in

th
e

m
od

el
?

(I
.e

.
is

it
re

le
va

nt
?

Sh
ow

a
sh

or
te

st
sc

en
ar

io
w

he
re

R
F

oc
cu

rs
.)

HA
ZA

RD
_I

NE
V:

A
[

F
"R

F"
]

SI
NG

LE
_E

VE
NT

Is
ha

za
rd

R
F

in
ev

it
ab

le
?

HA
ZA

RD
_P

RO
B_

UB
:

P<
p

[
F

"A
NY

"
]

NO
N_

PA
RA

ME
TR

IC
Is

th
e

pr
ob

ab
ili

ty
of

th
e

oc
cu

rr
en

ce
of

A
N

Y
ha

za
rd

be
lo

w
p?

(f
or

M
D

P
s:

is
th

e
m

ax
im

um
pr

ob
ab

ili
ty

of
th

at
pa

th
pr

op
er

ty
ac

ro
ss

al
l

ad
ve

rs
ar

ie
s

be
lo

w
p?

)
HA

ZA
RD

_P
RO

B_
LB

:
P>

p
[

F
"A

NY
"

]
NO

N_
PA

RA
ME

TR
IC

Is
th

e
pr

ob
ab

ili
ty

of
th

e
oc

cu
rr

en
ce

of
A

N
Y

ha
za

rd
be

yo
nd

p?

HA
ZA

RD
_I

NE
VI

T:
A

[
F

"R
F"

]
SI

NG
LE

_E
VE

NT
Is

th
e

ha
za

rd
in

ev
it

ab
le

?
(I

s
th

e
ha

za
rd

so
ge

ne
ri

c
th

at
th

e
sa

fe
ty

co
nt

ro
lle

r
ha

s
to

in
te

rv
en

e
by

de
fa

ul
t?

)
CT

R_
LI

VE
LY

:
A

[
F

(R
Fp

=a
ct

=>
(A

[
F

RF
p=

mi
t

=>
(A

[
F

RF
p=

in
ac

t
])

])
)

]

SI
NG

LE
_E

VE
NT

Is
th

e
sa

fe
ty

co
nt

ro
lle

r
liv

el
y

ha
nd

lin
g

ha
za

rd
R

F
in

al
ls

it
ua

ti
on

s?

MO
N_

LI
VE

LY
:

A
[

F
("

RF
"

=>
(A

[
X

RF
p=

ac
t

])
)

]
SI

NG
LE

_E
VE

NT
Is

th
e

sa
fe

ty
m

on
it

or
on

al
lp

at
hs

im
m

ed
ia

te
ly

re
co

gn
is

in
g

th
e

ha
za

rd
R

F
?

HA
ZA

RD
_I

N_
PR

OD
:

E
[

F
("

RF
"

\&
!"

FI
NA

L"
)

]
SI

NG
LE

_E
VE

NT
C

an
th

e
ha

za
rd

R
F

oc
cu

r
du

ri
ng

a
pr

od
uc

ti
on

cy
cl

e?

MI
SH

AP
_A

NY
_L

OW
:

S<
p

[
"M

IS
HA

P"
]

SI
NG

LE
_E

VE
NT

Is
th

e
st

ea
dy

-s
ta

te
(l

on
g-

ru
n)

pr
ob

ab
ili

ty
of

an
y

m
is

ha
p

R
F

be
lo

w
p?

DE
AD

LO
CK

_F
RE

ED
OM

_G
LO

BA
L:

fi
lt

er
(f

or
al

l,
A

[
G

!"
de

ad
lo

ck
"

])
MO

DE
L_

TE
ST

IN
G

C
an

a
de

ad
lo

ck
be

re
ac

he
d

fr
om

an
y

st
at

e?

HA
ZA

RD
_M

ON
_F

EA
S:

E
[

CE
_R

F
=>

(X
RF

p=
ac

t)
]

SI
NG

LE
_E

VE
NT

D
oe

s
th

e
m

on
it

or
im

m
ed

ia
te

ly
re

co
gn

is
e

R
F

in
at

le
as

t
a

si
ng

le
si

tu
-

at
io

n?
HA

ZA
RD

_M
ON

_A
LL

:
A

[
F

(C
E_

RF
=>

(X
RF

p=
ac

t)
)

]
SI

NG
LE

_E
VE

NT
D

oe
s

th
e

m
on

it
or

im
m

ed
ia

te
ly

re
co

gn
is

e
R

F
in

al
ls

it
ua

ti
on

s?

co
nt

’d
on

ne
xt

pa
ge

A.3. PROPERTY LIBRARY 53
Ta

bl
e
A
.3
:
C
om

pr
eh
en
siv

e
lis
t
of

pr
op

er
tie

s
fo
r
co
nt
ro
lle
r
ve
rifi

ca
to
n
(c
on

t’d
)

P
ro

p
er

ty
Id

:
P

ro
p

er
ty

T
ag

s
D

es
cr

ip
ti

on
of

P
ro

p
er

ty

SU
CC

_M
IT

:
A

[
G

(
("

AN
Y"

|
RF

p=
ac

t)
=>

(
F<

=t
(R

Fp
=m

it
\&

!"
AN

Y"
)

)
)

]

SI
NG

LE
_E

VE
NT

D
oe

st
he

co
nt

ro
lle

ra
lw

ay
s(

i.e
.

al
on

g
al

lp
at

hs
st

ar
ti

ng
fr

om
th

e
in

it
ia

l
st

at
e)

m
it

ig
at

e
ha

za
rd

R
F

w
it

hi
n

t
st

ep
s?

SU
CC

_R
ES

:
A

[
G

(
RF

p=
mi

t
=>

(
F<

=t
RF

p=
in

ac
t

)
)

]
SI

NG
LE

_E
VE

NT
D

oe
st

he
co

nt
ro

lle
ra

lw
ay

s(
i.e

.
al

on
g

al
lp

at
hs

st
ar

ti
ng

fr
om

th
e

in
it

ia
l

st
at

e)
re

su
m

e
fr

om
m

it
ig

at
ed

ha
za

rd
R

F
w

it
hi

n
t

st
ep

s?
SU

CC
_C

YC
LE

:
E

[
RF

p=
ac

t
=>

(F
RF

p=
mi

t
=>

(F
RF

p=
in

ac
t)

)
]

SI
NG

LE
_E

VE
NT

Is
th

e
cr

it
ic

al
ev

en
t

ha
nd

le
r

fo
r

R
F

fe
as

ib
le

(i
.e

.
do

es
th

er
e

ex
is

t
a

su
cc

es
sf

ul
ru

n)
?

TA
SK

_A
CH

IE
VE

ME
NT

:
A

[
G

(
(

!"
AN

Y"
\&

"p
re

_A
"

)
=>

(
(

F
(

"p
os

t_
A"

)
)

W
"A

NY
"

)
)

]

CT
R_

VE
RI

FI
CA

TI
ON

D
oe

s
th

e
pl

an
t

ac
hi

ev
e

ta
sk

A
(p

os
t)

gi
ve

n
A

is
re

qu
es

te
d

(p
re

)?

TA
SK

_A
CH

IE
VE

ME
NT

2:
A

[
F

G
"F

IN
AL

"
]

CO
_S

AF
ET

Y
D

oe
s

th
e

pl
an

t
al

w
ay

s
re

ac
h

an
d

m
ai

nt
ai

n
th

e
fin

al
st

at
e?

TA
SK

_A
CH

IE
VE

ME
NT

3:
A

[
F

"F
IN

AL
"

]
RE

AC
HA

BI
LI

TY
D

oe
s

th
e

pl
an

t
al

w
ay

s
re

ac
h

th
e

fin
al

st
at

e?

TA
SK

_F
IN

_W
IT

H_
HA

Z:
E

[
F

"R
F"

\&
(F

"F
IN

AL
")

]
SI

NG
LE

_E
VE

NT
C

an
w

e
fin

is
h

ou
r

ta
sk

(a
t

le
as

t
on

ce
)

af
te

r
ha

za
rd

R
F

ha
s

oc
cu

rr
ed

(o
nc

e)
?

TA
SK

_F
IN

IS
H:

E
[

F
"F

IN
AL

"
]

MO
DE

L_
TE

ST
IN

G
C

an
w

e
fin

is
h

ou
r

ta
sk

(a
t

le
as

t
on

ce
)?

TA
SK

_F
IN

IS
H2

:
E

[
F

"h
FI

NA
L_

CU
ST

OM
"

]
MO

DE
L_

TE
ST

IN
G

C
an

w
e

fin
is

h
ou

r
ta

sk
(a

t
le

as
t

on
ce

)?

TA
SK

_F
IN

IS
H3

:
A

[
"i

ni
t"

=>
(F

("
hF

IN
AL

_C
US

TO
M"

|
"M

IS
HA

P"
))

]
MO

DE
L_

TE
ST

IN
G

C
an

w
e

fin
is

h
ou

r
ta

sk
(a

t
le

as
t

on
ce

)?

TA
SK

_F
IN

IS
H4

:
P>

=p
fi

n
[

"i
ni

t"
=>

((
F

"h
FI

NA
L_

CU
ST

OM
")

\&
(G

!"
MI

SH
AP

")
)

]
MO

DE
L_

TE
ST

IN
G

C
an

w
e

fin
is

h
ou

r
ta

sk
(a

t
le

as
t

on
ce

)?

HA
ZA

RD
_P

RO
B:

Pm
ax

=?
[

F
"R

F"
]

SI
NG

LE
_E

VE
NT

W
ha

t
is

th
e

m
ax

im
al

pr
ob

ab
ili

ty
of

th
e

cr
it

ic
al

ev
en

t
R

F
?

HA
ZA

RD
_P

RO
B2

:
P=

?
[

"i
ni

t"
=>

(F
"R

F"
)

]
SI

NG
LE

_E
VE

NT
W

ha
t

is
th

e
pr

ob
ab

ili
ty

of
th

e
cr

it
ic

al
ev

en
t

R
F

?

AN
Y_

HA
ZA

RD
_P

RO
B:

P=
?

[
F

"A
NY

"
]

NO
N_

PA
RA

ME
TR

IC
W

ha
t

is
th

e
ov

er
al

lp
ro

ba
bi

lit
y

of
oc

cu
rr

en
ce

of
A

N
Y

of
th

e
sp

ec
ifi

ed
ha

za
rd

s?

co
nt

’d
on

ne
xt

pa
ge

54 APPENDIX A. MORE TECHNICAL DETAILS

Ta
bl
e
A
.3
:
C
om

pr
eh
en
siv

e
lis
t
of

pr
op

er
tie

s
fo
r
co
nt
ro
lle
r
ve
rifi

ca
to
n
(c
on

t’d
)

P
ro

p
er

ty
Id

:
P

ro
p

er
ty

T
ag

s
D

es
cr

ip
ti

on
of

P
ro

p
er

ty

HA
ZA

RD
_M

AX
PR

OB
:

Pm
ax

=?
[

F
"A

NY
"

]
NO

N_
PA

RA
ME

TR
IC

W
ha

t
is

th
e

m
ax

im
um

pr
ob

ab
ili

ty
of

oc
cu

rr
en

ce
of

A
N

Y
of

th
e

sp
ec

-
ifi

ed
ha

za
rd

s?
HA

ZA
RD

_M
IN

PR
OB

:
Pm

in
=?

[
F

"A
NY

"
]

NO
N_

PA
RA

ME
TR

IC
W

ha
t

is
th

e
m

in
im

um
pr

ob
ab

ili
ty

of
oc

cu
rr

en
ce

of
A

N
Y

of
th

e
sp

ec
i-

fie
d

ha
za

rd
s?

HA
ZA

RD
_P

RN
G:

Pm
ax

=?
[

F
CE

_R
F

]
-

Pm
in

=?
[

F
CE

_R
F

]
SI

NG
LE

_E
VE

NT
W

ha
t

is
th

e
pr

ob
ab

ili
ty

ra
ng

e
of

ha
za

rd
R

F
?

MI
SH

AP
_P

RO
B:

P=
?

[
F

RF
p=

mi
s

]
SI

NG
LE

_E
VE

NT
W

ha
t

is
th

e
pr

ob
ab

ili
ty

of
a

m
is

ha
p

fr
om

ha
za

rd
R

F
?

MI
SH

AP
_A

NY
_P

RO
B:

P=
?

[
"i

ni
t"

=>
(

F
"M

IS
HA

P"
)

]
SI

NG
LE

_E
VE

NT
W

ha
t

is
th

e
pr

ob
ab

ili
ty

of
an

y
m

is
ha

p?

MI
SH

AP
_M

IN
:

Pm
in

=?
[

F
CE

_R
F

]
SI

NG
LE

_E
VE

NT
W

ha
t

is
th

e
m

in
im

um
pr

ob
ab

ili
ty

of
a

m
is

ha
p

fr
om

ha
za

rd
R

F
?

MI
SH

AP
_M

AX
:

Pm
ax

=?
[

F
CE

_R
F

]
SI

NG
LE

_E
VE

NT
W

ha
t

is
th

e
m

ax
im

um
pr

ob
ab

ili
ty

of
a

m
is

ha
p

fr
om

ha
za

rd
R

F
?

MI
SH

AP
_U

NH
AN

DL
ED

:
S=

?
[

?
]

SI
NG

LE
_E

VE
NT

W
ha

t
is

th
e

st
ea

dy
-s

ta
te

(l
on

g-
ru

n)
pr

ob
ab

ili
ty

of
a

m
is

ha
p

fr
om

an
un

ha
nd

le
d

ha
za

rd
R

F
?

MI
SH

AP
_H

AN
DL

ED
:

S=
?

[
RF

p=
mi

s
]

SI
NG

LE
_E

VE
NT

W
ha

t
is

th
e

st
ea

dy
-s

ta
te

(l
on

g-
ru

n)
pr

ob
ab

ili
ty

of
a

m
is

ha
p

fr
om

a
ha

nd
le

d
ha

za
rd

R
F

?
MI

SH
AP

_A
NY

:
S=

?
[

"M
IS

HA
P"

]
SI

NG
LE

_E
VE

NT
W

ha
t

is
th

e
st

ea
dy

-s
ta

te
(l

on
g-

ru
n)

pr
ob

ab
ili

ty
of

an
y

m
is

ha
p?

MI
SH

AP
_C

ON
D:

fi
lt

er
(m

ax
,

P=
?

[F
RF

],
{1

})
MU

LT
I_

EV
EN

T
W

ha
t

is
th

e
(m

in
,a

vg
,m

ax
)

pr
ob

ab
ili

ty
of

m
is

ha
p

R
F

un
de

r
th

e
co

n-
di

ti
on

of
cr

it
ic

al
ev

en
t

1
oc

cu
rr

ed
be

fo
re

ha
nd

?
EX

PE
CT

ED
_S

EV
ER

IT
Y_

Q:
R{

"r
is

k_
se

v"
}=

?
[

S
]

NO
N_

PA
RA

ME
TR

IC
W

ha
t

is
th

e
av

er
ag

e
ex

pe
ct

ed
se

ve
ri

ty
in

th
e

lo
ng

-r
un

?

MI
N_

WE
IG

HT
_A

CC
:

R{
"R

F"
}m

in
=?

[
C<

=t
]

WE
IG

HT
_P

AR
AM

W
ha

t
is

th
e

m
in

im
um

ex
pe

ct
ed

R
F

ac
cu

m
ul

at
ed

ov
er

th
e

fir
st

t
st

ep
s?

MA
X_

WE
IG

HT
_A

CC
:

R{
"R

F"
}m

ax
=?

[
C<

=t
]

WE
IG

HT
_P

AR
AM

W
ha

ti
st

he
m

ax
im

um
ex

pe
ct

ed
R

F
ac

cu
m

ul
at

ed
ov

er
th

e
fir

st
ts

te
ps

?

MI
N_

WE
IG

HT
_T

OT
:

R{
"R

F"
}m

in
=?

[
C

]
WE

IG
HT

_P
AR

AM
W

ha
t

is
th

e
m

in
im

um
ex

pe
ct

ed
R

F
in

to
ta

l?
(N

B
:N

ot
av

ai
la

bl
e

fo
r

M
D

P
s!

)

co
nt

’d
on

ne
xt

pa
ge

A.3. PROPERTY LIBRARY 55
Ta

bl
e
A
.3
:
C
om

pr
eh
en
siv

e
lis
t
of

pr
op

er
tie

s
fo
r
co
nt
ro
lle
r
ve
rifi

ca
to
n
(c
on

t’d
)

P
ro

p
er

ty
Id

:
P

ro
p

er
ty

T
ag

s
D

es
cr

ip
ti

on
of

P
ro

p
er

ty

MA
X_

WE
IG

HT
_T

OT
:

R{
"R

F"
}m

ax
=?

[
C

]
WE

IG
HT

_P
AR

AM
W

ha
t

is
th

e
m

ax
im

um
ex

pe
ct

ed
R

F
in

to
ta

l?
(N

ot
e:

R
em

ov
e

an
y

no
n-

ze
ro

re
w

ar
d

en
d

co
m

po
ne

nt
s

fr
om

th
e

tr
an

si
ti

on
m

od
el

!)
CH

K_
SA

F_
PE

RF
:

mu
lt

i(
R{

"r
is

k_
se

v"
}<

=s
[

C<
=t

],
P<

=p
[

F
"A

NY
"

])
QU

ER
Y

D
ec

id
e

w
he

th
er

th
er

e
is

a
co

nt
ro

lle
r

be
lo

w
an

ex
pe

ct
ed

se
ve

ri
ty

s
an

d
a

ha
za

rd
pr

ob
ab

ili
ty

p.
MA

X_
PR

OD
:

mu
lt

i(
R{

"p
ro

d"
}m

ax
=?

[
C

],
R{

"r
is

k_
se

v"
}<

=s
[

C
])TO

TA
L

Se
le

ct
a

co
nt

ro
lle

r
th

at
m

ax
im

is
es

pr
od

uc
ti

vi
ty

w
hi

le
st

ay
in

g
be

lo
w

an
ex

pe
ct

ed
cu

m
ul

at
iv

e
ex

po
su

re
to

se
ve

re
in

ju
ri

es
of

p.
MA

X_
BO

UN
DE

D:
mu

lt
i(

R{
"R

EW
1"

}m
ax

=?
[

C<
=t

],
R{

"R
EW

2"
}<

=p
[

C<
=t

])
CT

R_
SY

NT
HE

SI
S

Se
le

ct
a

co
nt

ro
lle

r
th

at
m

ax
im

is
es

R
F

w
hi

le
th

e
ex

pe
ct

ed
cu

m
ul

at
iv

e
1

st
ay

s
be

lo
w

p
w

it
hi

n
t.

OP
T_

RI
SK

_P
ER

F:
mu

lt
i(

R{
"p

ro
d"

}m
ax

=?
[

C
],

R{
"r

is
k_

se
v"

}<
=s

[
C

],
R{

"r
is

k_
le

ve
l"

}<
=r

[
C

])

TO
TA

L
Se

le
ct

a
co

nt
ro

lle
r

th
at

m
ax

im
is

es
pr

od
uc

ti
vi

ty
w

it
hi

n
th

e
tw

o
bo

un
ds

of
ri

sk
le

ve
lr

an
d

ex
pe

ct
ed

se
ve

ri
ty

s.

MA
X_

PO
T_

BN
D_

PR
OD

:
mu

lt
i(

R{
"p

ot
en

ti
al

"}
ma

x=
?

[
C<

=t
],

R{
"p

ro
d"

}>
=p

[
C<

=t
])

CU
MU

LA
TI

VE
Se

le
ct

th
e

co
nt

ro
lle

r
w

it
h

th
e

m
ax

im
um

ha
za

rd
m

it
ig

at
io

n
po

te
nt

ia
l

w
hi

le
m

ai
nt

ai
ni

ng
a

m
in

im
um

pr
od

uc
ti

vi
ty

of
?

in
th

e
fir

st
C

st
ep

s.
DE

AD
LO

CK
_I

N_
FI

NA
L:

A
[

G
(!

"d
ea

dl
oc

k"
|

"F
IN

AL
")

]
MO

DE
L_

TE
ST

IN
G

Is
ev

er
y

de
ad

lo
ck

st
at

e
a

’fi
na

l’
st

at
e?

(D
oe

s
ou

r
de

fin
it

io
n

of
’fi

na
l’

in
cl

ud
e

al
ld

ea
dl

oc
k

st
at

es
?)

DE
AD

LO
CK

_I
N_

FI
NA

L2
:

E
[

F
("

de
ad

lo
ck

"
\&

!"
FI

NA
L"

)
]

MO
DE

L_
TE

ST
IN

G
A

re
al

ld
ea

dl
oc

ki
ng

st
at

es
fin

al
?

(S
ho

w
a

w
it

ne
ss

if
vi

ol
at

ed
.)

FI
NA

L_
IN

_D
EA

DL
OC

K:
A

[
G

("
FI

NA
L"

=>
("

de
ad

lo
ck

"
|

(X
"d

ea
dl

oc
k"

))
)

]MO
DE

L_
TE

ST
IN

G
A

re
al

l’
fin

al
’s

ta
te

s
al

so
(i

nt
er

m
ed

ia
te

)
de

ad
lo

ck
st

at
es

?

IN
FI

NI
TE

_P
AT

H:
E

[
G

!"
FI

NA
L"

]
MO

DE
L_

TE
ST

IN
G

Is
th

er
e

a
pa

th
no

t
ev

en
tu

al
ly

le
ad

in
g

to
th

e
fin

al
st

at
e?

IN
FI

NI
TE

_P
AT

H_
VA

R:
E

[
F

"h
FI

NA
L_

CU
ST

OM
"

=>
(F

!"
hF

IN
AL

_C
US

TO
M"

=>
(F

"h
FI

NA
L_

CU
ST

OM
")

)
]

MO
DE

L_
TE

ST
IN

G
C

an
th

e
m

od
el

it
er

at
e

th
ro

ug
h

se
ve

ra
l

cy
cl

es
(i

nd
ic

at
ed

by
hF

IN
AL

_C
US

TO
M)

w
it

ho
ut

re
ac

hi
ng

an
d

st
op

pi
ng

at
FI

NA
L?

IN
IF

IN
IT

E_
PA

TH
_T

HR
OU

GH
_F

IN
AL

:
E

[
F

"F
IN

AL
"

\&
(F

!"
de

ad
lo

ck
")

]
MO

DE
L_

TE
ST

IN
G

Is
th

er
e

a
de

ad
lo

ck
-fr

ee
(a

n
in

fin
it

e)
pa

th
pa

ss
in

g
th

e
fin

al
st

at
e?

FI
NA

LS
_D

O_
AL

WA
YS

_D
EA

DL
OC

K:
A

[
G

("
FI

NA
L"

=>
(F

"d
ea

dl
oc

k"
))

]
MO

DE
L_

TE
ST

IN
G

D
o

al
lr

ea
ch

ab
le

’fi
na

l’
st

at
es

(e
ve

nt
ua

lly
)

le
ad

to
de

ad
lo

ck
st

at
es

?

FI
NA

LS
_C

AN
_A

LW
AY

S_
DE

AD
LO

CK
:

A
[

F
"F

IN
AL

"
=>

((
F

"d
ea

dl
oc

k"
)

|
(G

"d
ea

dl
oc

k"
))

]
MO

DE
L_

TE
ST

IN
G

C
an

w
e

al
w

ay
s

re
ac

h
a

de
ad

lo
ck

in
g

’fi
na

l’
st

at
e?

(I
s

th
er

e
a

co
nt

ro
lle

r
av

oi
di

ng
cy

cl
es

th
ro

ug
h

no
n-

ze
ro

re
w

ar
ds

?)

co
nt

’d
on

ne
xt

pa
ge

56 APPENDIX A. MORE TECHNICAL DETAILS

Ta
bl
e
A
.3
:
C
om

pr
eh
en
siv

e
lis
t
of

pr
op

er
tie

s
fo
r
co
nt
ro
lle
r
ve
rifi

ca
to
n
(c
on

t’d
)

P
ro

p
er

ty
Id

:
P

ro
p

er
ty

T
ag

s
D

es
cr

ip
ti

on
of

P
ro

p
er

ty

NO
N_

DE
AD

LO
CK

IN
G_

FI
NA

LS
:

A
[

F
"F

IN
AL

"
=>

!(
F

"d
ea

dl
oc

k"
)

]
MO

DE
L_

TE
ST

IN
G

C
an

w
e

al
w

ay
s

re
ac

h
a

no
n-

de
ad

lo
ck

in
g

’fi
na

l’
st

at
e?

FI
NA

LS
_W

IT
H_

IN
F_

CO
NT

:
fi

lt
er

(f
or

al
l,

A
[

G
"d

ea
dl

oc
k"

],
"F

IN
AL

"
\&

!"
in

it
")

MO
DE

L_
TE

ST
IN

G
F

in
d

’fi
na

l’
st

at
es

fr
om

w
hi

ch
w

e
ca

n
(e

rr
on

eo
us

ly
)

co
nt

in
ue

pe
rp

et
u-

al
ly

.
FI

NA
LS

_W
IT

H_
IN

F_
CO

NT
2:

fi
lt

er
(e

xi
st

s,
E

[
!(

F
"d

ea
dl

oc
k"

)
],

"F
IN

AL
")

MO
DE

L_
TE

ST
IN

G
A

re
th

er
e

re
ac

ha
bl

e
’fi

na
l’

st
at

es
w

it
h

at
le

as
t

on
e

de
ad

lo
ck

-fr
ee

co
n-

ti
nu

at
io

n?
IN

IT
IA

L_
FI

NA
L_

IN
IT

IA
L:

fi
lt

er
(e

xi
st

s,
E

[
F

"i
ni

t"
],

"F
IN

AL
")

MO
DE

L_
TE

ST
IN

G
Is

th
er

e
a

pa
th

fr
om

an
in

it
ia

ls
ta

te
th

ro
ug

h
a

’fi
na

l’
st

at
e

an
d

re
tu

rn
-

in
g

to
an

’in
it

ia
l’

st
at

e?
FI

NA
L_

XO
R_

IN
IT

IA
L:

fi
lt

er
(e

xi
st

s,
tr

ue
,

"F
IN

AL
"

\&
"i

ni
t"

)
MO

DE
L_

TE
ST

IN
G

D
oe

st
he

’fi
na

l’
st

at
e

ov
er

la
p

w
it

h
th

e
’in

it
ia

l’
st

at
e?

(S
ho

ul
d

be
em

pt
y

he
re

.)
FI

NA
LS

_W
IT

HO
UT

_A
NY

_D
EA

DL
OC

KS
:

fi
lt

er
(e

xi
st

s,
A

[
G

!"
de

ad
lo

ck
"

],
"F

IN
AL

")
MO

DE
L_

TE
ST

IN
G

A
re

th
er

e
re

ac
ha

bl
e

’fi
na

l’
st

at
es

fr
om

w
hi

ch
al

l
pa

th
s

ar
e

de
ad

lo
ck

-
fr

ee
?

List of Tables

2.1 Switches available through Yap’s command line interface 13
2.1 Switches available via the command line interface of Yap (cont’d) 14
2.3 Emacs key bindings available in yap-mode 15

4.1 Phases of the risk factor f and their labelling 34

5.1 Simulation run showing 20 steps. Values in parentheses indicate
that, for start.yap, risk structure generation was omitted 41

A.1 Comprehensive list of currently supported action types 48
A.1 Comprehensive list of currently supported action types (cont’d) . 49
A.1 Comprehensive list of currently supported action types (cont’d) . 50
A.2 Comprehensive list of currently supported item types 51
A.3 Comprehensive list of properties for controller verificaton 52
A.3 Comprehensive list of properties for controller verificaton (cont’d) 53
A.3 Comprehensive list of properties for controller verificaton (cont’d) 54
A.3 Comprehensive list of properties for controller verificaton (cont’d) 55
A.3 Comprehensive list of properties for controller verificaton (cont’d) 56

57

List of Figures

1.1 Exemplary workflow to be used with Yap 6

3.1 Activity fragment of the process declared in Example 1 19
3.2 Taxonomy of actions; symbols are described in Table A.1 in Ap-

pendix A.1 . 27
3.3 Taxonomy of endangerments; symbols are described in Table A.1

in Appendix A.1 . 27
3.4 Taxonomy of mitigations; symbols are described in Table A.1 in

Appendix A.1 . 27

4.1 Risk graph generated by Yap from Listing 3.1 and representing
the risk structure for supplyPower 33

4.2 Phase model instantiated for the risk factor � from Example 3 . 35
4.3 Suppressing parts of a risk graph 38

5.1 Activity graph generated from start.yap in Section 5.2 45

58

Bibliography

Hoare, Tony (1985). Communicating Sequential Processes. Int. Series in Comp. Sci. Prentice-
Hall. url: http://www.usingcsp.com.

Jones, Cliff B. (1986). Systematic Program Development Using VDM. Prentice-Hall.
Spivey, J. M. (1989). “An Introduction to Z and Formal Specification”. In: IET Software

Engineering Journal 4.1, pp. 40–50. issn: 0268-6961. doi: 10.1049/sej.1989.0006.
Jackson, Michael A. (2001). Problem Frames. Harlow: Addison-Wesley.
Letier, Emmanuel (2001). “Reasoning about Agents in Goal-oriented Requirements Engineer-

ing”. Thèse de Doctorat en Sciences Appliquées. Université Catholique de Louvain. url:
https://dial.uclouvain.be/pr/boreal/object/boreal:5139/datastream/PDF_01/view.

Leveson, Nancy G. (2004). “A new accident model for engineering safer systems”. In: Safety
Science 42.4, pp. 237–70. issn: 0925-7535. doi: 10.1016/s0925-7535(03)00047-x.

Broy, Manfred (2005). “Service-oriented Systems Engineering: Specification and Design of
Services and Layered Architectures – The Janus Approach”. In: Engineering Theories of
Software Intensive Systems. Ed. by Broy M. et al. Dordrecht: Springer, pp. 47–81. doi:
10.1007/1-4020-3532-2_2.

Kwiatkowska, Marta, Gethin Norman, and David Parker (2007). “Stochastic Model Checking”.
In: Formal Methods for the Design of Computer, Communication and Software Systems:
Performance Evaluation (SFM). Ed. by M. Bernardo and J. Hillston. Vol. 4486. LNCS.
Springer, pp. 220–70. doi: 10.1007/978-3-540-72522-0_6.

Baier, Christel and Joost-Pieter Katoen (June 11, 2008). Principles of Model Checking. Cam-
bridge, Mass, USA: MIT Press.

Lamsweerde, Axel van (2009). Requirements Engineering: From System Goals to UML Models
to Software Specifications. Chichester: Wiley.

Abrial, Jean-Raymond (2010). Modeling in Event-B: System and Software Engineering. Cam-
bridge: Cambridge University Press.

Broy, Manfred (2010). “Multifunctional software systems: Structured modeling and specifica-
tion of functional requirements”. In: Science of Computer Programming 75.12, pp. 1193–
1214. doi: 10.1016/j.scico.2010.06.007.

Roscoe, A. William (2010). Understanding Concurrent Systems. London: Springer. doi: 10.
1007/978-1-84882-258-0.

Leveson, Nancy G. (2012). Engineering a Safer World: Systems Thinking Applied to Safety.
Engineering Systems. Cambridge, Mass.: MIT Press. doi: 10.7551/mitpress/8179.001.
0001.

Friedenthal, Sanford, Alan Moore, and Rick Steiner (2014). A Practical Guide to SysML:
The Systems Modeling Language. 3rd ed. Burlington, Mass: Morgan Kaufmann. doi:
10.1016/C2010-0-66331-0.

Gleirscher, Mario (2014). “Behavioral Safety of Technical Systems”. Dissertation. Technische
Universität München. url: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:
bvb:91-diss-20141120-1221841-0-1.

Sanger, Terence D. (2014). “Risk-Aware Control”. In: Neural Computation 26.12, pp. 2669–
2691. doi: 10.1162/neco_a_00662.

Ericson, Clifton A. (2015). Hazard Analysis Techniques for System Safety. 2nd ed. Hoboken,
N.J.: Wiley.

59

http://www.usingcsp.com
https://doi.org/10.1049/sej.1989.0006
https://dial.uclouvain.be/pr/boreal/object/boreal:5139/datastream/PDF_01/view
https://doi.org/10.1016/s0925-7535(03)00047-x
https://doi.org/10.1007/1-4020-3532-2_2
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1016/j.scico.2010.06.007
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.7551/mitpress/8179.001.0001
https://doi.org/10.7551/mitpress/8179.001.0001
https://doi.org/10.1016/C2010-0-66331-0
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20141120-1221841-0-1
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20141120-1221841-0-1
https://doi.org/10.1162/neco_a_00662

60 BIBLIOGRAPHY

ISO/TS 15066 (2016). Robots and robotic devices – Collaborative robots. Standard. Robotic
Industries Association (RIA). url: https://www.iso.org/standard/62996.html.

Ruijter, A. de and F. Guldenmund (2016). “The bowtie method: A review”. In: Safety Science
88, pp. 211–218. doi: 10.1016/j.ssci.2016.03.001.

Gleirscher, Mario (2017). “Run-Time Risk Mitigation in Automated Vehicles: A Model for
Studying Preparatory Steps”. In: Formal Verification of Autonomous Vehicles (FVAV),
1st iFM Workshop on. Ed. by L. Bulwahn, M. Kamali, and S. Linker. EPTCS, pp. 75–90.
doi: 10.4204/eptcs.257.8.

Gleirscher, Mario and Stefan Kugele (Jan. 2017a). “Defining Risk States in Autonomous
Road Vehicles”. In: High Assurance Systems Engineering (HASE), 18th IEEE Int. Symp.
Pp. 112–5. doi: 10.1109/HASE.2017.14.

— (2017b). “From Hazard Analysis to Hazard Mitigation Planning: The Automated Driv-
ing Case”. In: NASA Formal Methods (NFM), 9th Int. Symp. Ed. by C. Barrett et al.
Vol. 10227. LNCS. Berlin/New York: Springer. doi: 10.1007/978-3-319-57288-8_23.

Gleirscher, Mario (2018). “Strukturen für die Gefahrenerkennung und -behandlung in au-
tonomen Maschinen”. In: Beiträge zu einer Systemtheorie Sicherheit. Ed. by Jürgen Bey-
erer and Petra Winzer. acatech DISKUSSION. München: Herbert Utz Verlag. Chap. 8.4,
pp. 154–167.

Machin, Mathilde et al. (2018). “SMOF – A Safety MOnitoring Framework for Autonomous
Systems”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 48.5,
pp. 702–715. doi: 10.1109/tsmc.2016.2633291.

Gleirscher, Mario, Simon Foster, and Jim Woodcock (2019). “New Opportunities for Integrated
Formal Methods”. In: ACM Computing Surveys 52 (6)., 117:1–117:36. doi: 10 . 1145 /
3357231. arXiv: 1812.10103 [cs.SE].

Gleirscher, Mario (2020). “Yap: Tool Support for Deriving Safety Controllers from Hazard
Analysis and Risk Assessments”. In: Formal Methods for Autonomous Systems (FMAS),
2nd Workshop. Ed. by Matt Luckuck and Marie Farrell. Vol. 329. EPTCS. Open Pub-
lishing Association, pp. 31–47. doi: 10.4204/EPTCS.329.4. arXiv: 2012.01176 [cs.SE,
cs.RO].

Gleirscher, Mario and Radu Calinescu (2020). “Safety Controller Synthesis for Collaborative
Robots”. In: Engineering of Complex Computer Systems (ICECCS), 25th Int. Conf.,
Singapore. Ed. by Yi Li and Alan Liew. ACM, pp. 83–92. doi: 10.1109/ICECCS51672.
2020.00017. arXiv: 2007.03340 [cs.RO cs.SE cs.SY eess.SY].

Gleirscher, Mario, Radu Calinescu, and Jim Woodcock (2021). “Risk Structures: A Design
Algebra for Risk-Aware Machines”. In: Formal Aspects of Computing in press. doi: 10.
1007/s00165-021-00545-4. arXiv: 1904.10386 [cs.SE].

https://www.iso.org/standard/62996.html
https://doi.org/10.1016/j.ssci.2016.03.001
https://doi.org/10.4204/eptcs.257.8
https://doi.org/10.1109/HASE.2017.14
https://doi.org/10.1007/978-3-319-57288-8_23
https://doi.org/10.1109/tsmc.2016.2633291
https://doi.org/10.1145/3357231
https://doi.org/10.1145/3357231
https://arxiv.org/abs/1812.10103
https://doi.org/10.4204/EPTCS.329.4
https://arxiv.org/abs/2012.01176
https://arxiv.org/abs/2012.01176
https://doi.org/10.1109/ICECCS51672.2020.00017
https://doi.org/10.1109/ICECCS51672.2020.00017
https://arxiv.org/abs/2007.03340
https://doi.org/10.1007/s00165-021-00545-4
https://doi.org/10.1007/s00165-021-00545-4
https://arxiv.org/abs/1904.10386

Index

accident, 8
agent, see actor
assumption, see property
autonomous machine, 5

causal factor, see risk factor
command-line interface, 13
constraint, 24, 40

causes, 24
excludes, 24
mitPreventsMit, 25
override, 25
permits, 24
prevents, 24
preventsMit, 25
requires, 24
requiresMit, 24
requiresNOf, 24
requiresNot, 24
requiresOcc, 24

controller
synthesis, 20

enforcement, 6
event, 20, 21

action, 20
endangerment, 21
mitigation, 21
risk-neutral, 21

endangerment, 20
mitigation, 20
nominal, 20
synchronous, 21

factor
direct, 36
final, 25
mishap, 25

failure, 7
fault, 7
functional safety, 8

guarantee, see property
guarded command, 20

hazard, 7

impact, 29
incident, 8
intervention, see mitigation
invariant, 6
item, 7

likelihood, 30
logging

global, 13

mishap, 7
mitigation, see enforcement

direct, 25
offRepair, 25

mitigation order, 42
mode, see guarded command, 21
model debugging, 13

negativity unit, 30

probability, 30
property, 5

emergent, 6, 7

requirement
safety, see property

responsibility, 7
risk

factor, 20
phase, 20
space, 5, 20
state, 8, 20
structure, 20

risk space
exploration, 40

risk aversion, 6
risk factor, 7
risk state space, 21

safety constraint, see requirement
safety controller, 20
safety controller, 5
safety function, 20

61

62 INDEX

safety monitor, see safety controller
severity, 30
suppressEndangerments, 37

suppressMishaps, 37
suppressMitigations, 37
suppressResumptions, 37

	List of Abbreviations
	What is Yap and What Can It be Used For?
	Who is Supposed to Use Yap?
	Some of Yap's Underlying Principles
	About Yap, Acknowledgements, and Licensing

	Yap in a Nutshell
	Installation Requirements and Suggestions
	Getting and Installing a Copy of Yap
	First Steps in Using Yap
	The Yap Command-Line Interface
	Editing Yap Models in Emacs with yap-mode

	Yap's Input
	The Activity Model
	The Control Model
	Mode Specifications
	Item Specifications

	The Factor Model
	Impact Model
	Parameter-Value Pairs

	Yap's Output: Risk Structures
	Understanding Risk Structures
	Settings Controlling Yap's Output

	Working with Yap
	Reduction and Shaping of Risk Structures
	Performing Symbolic Simulation
	Property Inheritance and Superposition of Sub-Models
	Using Wildcards
	Enumerating and Ordering Risk Spaces
	Displaying Activity Graphs

	FAQ, Troubleshooting, and Limitations
	Frequently Asked Questions and Troubleshooting
	Known Limitations and Bugs

	More Technical Details
	Taxonomy of Actions
	Taxonomy of Items
	Property Library

	List of Tables
	List of Figures
	Index

